izpis_h1_title_alt

Posplošeni linearni modeli : delo diplomskega seminarja
ID Horvat, Leon (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (470,91 KB)
MD5: 639E412AABC0DADF4A90A6B8EF04410A

Abstract
Analiziranje in modeliranje povezav med spremenljivkami postaja vedno bolj pomembno. V delu so predstavljeni linearni posplošeni modeli in njihov razvoj iz modelov linearne regresije. Diskutirane so teoretične zahteve modelov, podrobno je predstavljena eksponentna družina porazdelitev slučajnih spremenljivk in pripadajoče naravne povezovalne funkcije. Definirane so osnovne oblike pojasnjevalnih slučajnih spremenljivk, za lažje razumevanje so podani njihovi primeri. Razloženi so tudi postopki za preverjanje prileganja gnezdenih modelov z devianco. Vse našteto je uporabljeno za gradnjo modelov prekinitev, kapitalizacij in odkupov polic življenjskega zavarovanja. Za bolj jasno sliko so opisane oblike življenjskih zavarovanj in njihova povezava s prekinitvami, kapitalizacijami in odkupi. Razčlenjeno je čiščenje in preoblikovanje podatkov, ki so bili na voljo za modeliranje. Podrobno so raziskani vplivi posameznih pojasnjevalnih slučajnih spremenljivk na proučevano spremenljivko in ugotovitve, katere spremenljivke so pomembne za napovedovanje in katere ne. Vse to omogoča zavarovalnici globlji vpogled v kompleksna razmerja v njenem portfoliu in boljšo pripravljenost na dejavnike tveganja v prihodnosti.

Language:Slovenian
Keywords:posplošeni linearni modeli, linearna regresija, logistična regresija, eksponentna družina, povezovalna funkcija, devianca, življenjsko zavarovanje, prekinitev, kapitalizacija, odkup
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-102706 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18429785 This link opens in a new window
Publication date in RUL:07.09.2018
Views:3930
Downloads:521
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generalized linear models
Abstract:
Analysing and modelling relationships between variables are getting more and more important. In this work, we introduce generalized linear models, and develop them from linear regression models. We discuss theoretical assumptions for these models, and give an in-depth explanation of exponential families of distributions and the associated canonical link functions. We classify the most standard types of explanatory variables, and provide several examples for easier understanding. We explain the procedure for comparing nested models with deviance. We apply the theory described above to constructing models for lapsed, paid up, and surrendered life insurance policies. For a clearer picture, different forms of life insurance and their relationships with lapsed, paid up and surrendered policies are presented. We analyse the influences of individual explanatory variables on the response variable, and determine which explanatory observations are essential and which are not. With this, an insurance company may gain insight into complex relationships in its portfolio and better readiness for risk factors in the future.

Keywords:generalized linear models, linear regression, logistic regression, exponential family, link function, deviance, life insurance, lapse, paid up insurance, surrender

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back