Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Uvod v teorijo informacij : delo diplomskega seminarja
ID
Durcik, Primož
(
Author
),
ID
Košir, Tomaž
(
Mentor
)
More about this mentor...
,
ID
Šega, Gregor
(
Comentor
)
PDF - Presentation file,
Download
(361,87 KB)
MD5: 52E07FF3148E25EF65DF5C32FB5B9BEB
Image galllery
Abstract
V delu diplomskega seminarja sem se ukvarjal z iskanjem kodiranja, ki ima najmanjšo pričakovano dolžino. Takšnemu kodiranju pravimo optimalno kodiranje. Najprej sem določil omejitve dolžin optimalnega kodiranja in dokazal Kraftovo neenakost za predponska kodiranja in kodiranja, ki se jih da enolično odkodirati (enolična kodiranja). Kraftova neenakost nam namreč daje potreben in zadosten pogoj za obstoj predponskega kodiranja ali enoličnega kodiranja za dano množico dolžin. V zaključku dela pa sem se osredotočil na Huffmanovo kodiranje. Na primerih sem predstavil idejo Huffmanovega algoritma ter povezave z nekaterimi drugimi matematičnimi problemi. Nato sem podal teoretično ozadje algoritma in dokazal, da je kodiranje, ki ga dobimo s Huffmanovim algoritmom, optimalno.
Language:
Slovenian
Keywords:
entropija
,
Huffman
,
informacija
,
koda
,
kodiranje
,
Kraftova neenakost
,
optimalno
,
Shannon
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-102701
UDC:
519.8
COBISS.SI-ID:
18429529
Publication date in RUL:
07.09.2018
Views:
1354
Downloads:
282
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Introduction to information theory
Abstract:
In the course of the diploma seminar I was looking for code with the smallest expected length. Such code is called optimal code. First I defined the limits of lengths of optimal code and presented Kraft inequality for prefix code and uniquely decodable code. Kraft inequality gives us a necessary and sufficient condition for the existence of a prefix code or a uniquely decodable code for a given set of codeword lengths. At the end of my work I focused on Huffman codes. Using examples I presented the idea of Huffman algorithm and the connection with some other mathematical problems. Then I gave the theoretical background to the algorithm and concluded that the code obtained with the Huffman algorithm is optimal.
Keywords:
entropy
,
Huffman
,
information
,
codeword
,
code
,
Kraft inequality
,
optimal
,
Shannon
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back