izpis_h1_title_alt

Nelinearne metode redukcije modelov v dinamiki podstruktur
ID Pogačar, Miha (Author), ID Čepon, Gregor (Mentor) More about this mentor... This link opens in a new window, ID Boltežar, Miha (Comentor)

.pdfPDF - Presentation file, Download (7,03 MB)
MD5: 9ADED62279EB55645A47A16183D3AB05

Abstract
Dinamska analiza kompleksnih struktur je računsko zahtevna, zato se poslužujemo delitve strukture na več podstruktur. Vsako izmed podstruktur analiziramo ločeno in z metodami redukcije zmanjšamo število njenih prostostnih stopenj, nato pa podstrukture sklopimo v celoto, kar omogoča hitrejšo analizo. V prvem delu magistrske naloge je predstavljena geometrijsko linearna formulacija končnega elementa ter Craig–Bamptonova in Rubinova metoda redukcije modelov. V drugem delu magistrske naloge je formulacija končnega elementa razširjena z nelinearno zvezo med pomiki in deformacijami, kar predstavlja geometrijsko nelinearnost. Zaradi nelinearnosti sistema je potrebna tudi nadgradnja redukcijske metode. Dinamski odziv smo izračunali z uporabo analitičnih enačb, analizo celotne strukture z metodo končnih elementov in uporabo redukcijskih metod. V izbranem frekvenčnem območju smo pokazali dobro ujemanje.

Language:Slovenian
Keywords:dinamika geometrijska nelinearnost metoda končnih elementov podstrukturiranje redukcija modelov
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Publisher:[M. Pogačar]
Year:2018
PID:20.500.12556/RUL-102520 This link opens in a new window
UDC:519.6:531/533(043.2)
COBISS.SI-ID:16391451 This link opens in a new window
Publication date in RUL:01.09.2018
Views:2128
Downloads:420
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Nonlinear Model Reduction in Dynamic Substructuring
Abstract:
Dynamic analysis of complex structures can be very demanding, therefore such structures are being divided into several substructures. Each of the substructures is analysed separately and the number of degrees of freedom is reduced using model order reduction methods. Then the initial structure is obtained by assembly of the reduced substructures, providing faster analysis. In the first part of the dissertation geometrically linear formulation of the finite element and Craig–Bampton model reduction method is presented. In the second part of the dissertation the finite element formulation is upgraded using nonlinear displacement – deformation relations. Due to the geometrical nonlinearity of the system also reduction methods have to be upgraded. The comparison of the beam dynamic responses, obtained by analytical equations, finite element analysis of the complete structure and use of model reduction method indicates good correspondence within the selected frequency interval.

Keywords:dynamics geometrical nonlinearity finite element method substructuring model reduction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back