izpis_h1_title_alt

Identifikacija napak na ležajih s pomočjo paketa za strojno učenje scikit-learn
ID Kubelj, Klemen (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window, ID Boltežar, Miha (Comentor)

.pdfPDF - Presentation file, Download (3,41 MB)
MD5: 7DC8F711CEADC6BEF6BE5A57F1936A5E

Abstract
Osrednji problem in področje raziskovanja tega dela je strojno učenje kot pripomoček za ugotavljanje napak na strojnih elementih. V prvem delu je obravnavana raziskava, iz katere so pridobljeni surovi podatki in njihova pred-obdelava v ustrezno obliko. V omenjeni raziskavi se opazuje 5 različnih napak na ležajih: aksialna in radialna preobremenitev, preobremenitev upogibnega momenta, kontaminacija in napaka kletke. V naslednjih sklopih so predstavljene teoretične osnove strojnega učenja, algoritmi za uspešno analizo ter primeri uporabe na konkretnih podatkih. Kot pomemben del raziščemo tudi optimizacijo parametrov pri različnih modelih in obravnavamo korektnost dobljenih rezultatov.

Language:Slovenian
Keywords:strojno učenje, umetna inteligenca, kakovost, ležaj, Python, scikit-learn, sklearn
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Publisher:[K. Kubelj]
Year:2018
PID:20.500.12556/RUL-102471 This link opens in a new window
UDC:004.85:621.82(043.2)
COBISS.SI-ID:16251931 This link opens in a new window
Publication date in RUL:31.08.2018
Views:1536
Downloads:518
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:identification of bearing faults with machine learning packet scikit-learn
Abstract:
The main focus and research field of this work is machine learning as a tool for classifying faults of machine elements. In the first part, we address the research, from which we take the raw data and the preprocessing of the gathered data set. The research takes a look at 5 different bearing faults: axial and radial overload, bending moment, contamination and shield defect. Next, we take a look at the theoretical background of machine learning, algorithms for analysis and examples of practical use. As an important aspect we research the possibilities of optimizing model parameters and evaluate the success of our predictions.

Keywords:machine learning, artificial intelligence, quality, bearing, Python, scikit-learn, sklearn

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back