izpis_h1_title_alt

Splošna definicija diferencirane zasebnosti : delo diplomskega seminarja
ID Jazbec, Metod (Author), ID Peperko, Aljoša (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (638,17 KB)
MD5: 259009764B59B3015687598035F925CB

Abstract
V delu predstavimo diferencirano zasebnost. Gre za matematično definicijo zasebnosti pri javni objavi ter rudarjenju podatkov. Predstavljena je splošna definicija v kontekstu metričnih prostorov in verjetnostne mere, ki omogoča enotno obravnavo različnih vrst podatkov. Pokažemo nekaj osnovnih izrekov, ki omilijo zahteve definicije. Obravnavan je Laplaceov mehanizem za numerične podatke. Podana je izpeljava spodnjih mej za največjo napako zasebnih odzivnih mehanizmov. V nadaljevanju se osredotočimo na funkcijske podatke. S pomočjo teorije Gaussovih procesov in Hilbertovih prostorov z reprodukcijskim jedrom pokažemo uporabo diferencirane zasebnosti na primeru jedrne cenilke gostote. Osnovne mehanizme implementiramo in predstavimo rezultate.

Language:Slovenian
Keywords:diferencirana zasebnost, odzivni mehanizem, metrični prostor, funkcijski podatki, verjetnostna mera
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-102430 This link opens in a new window
UDC:519.8
COBISS.SI-ID:18418009 This link opens in a new window
Publication date in RUL:30.08.2018
Views:1794
Downloads:342
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:General definition of differential privacy
Abstract:
We introduce the concept of differential privacy, mathematical definition for privacy preserving data publishing and data mining. General definition in context of metric spaces and probability measure is given. Further, we present some theorems which help to alleviate the requirements of described definition. Laplace mechanism for numerical data and lower bounds on errors of response mechanisms are presented. We later turn focus to functional data. Using Gaussian processes and Reproducing Kernel Hilbert Spaces we present how differential privacy is used for privatization of density kernel estimator. Most of the described mechanisms are also implemented and results are presented at the end

Keywords:differential privacy, response mechanism, metric space, functional data, probability measure

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back