izpis_h1_title_alt

Vzorčna anonimizacija umetne zdravstvene podatkovne baze
ID LJUBIJANKIĆ, EDO (Author), ID Mraz, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,96 MB)
MD5: FB96D53C1C14BE4801E13248AB63DD60

Abstract
Z anonimizacijo podatkov zaščitimo identito posameznika pred razkritjem občutljivih osebnih podatkov. Bolnišnice hranijo podatke o svojih pacientih v podatkovnih bazah, precejšen del teh podatkov pa se uporablja v raziskovalne namene. V skladu z zakoni so morajo osebni podatki pacientov anonimizirati, saj bi v nasprotnem primeru ogrozili zasebnost pacientov. V diplomskem delu smo primerjali nabor anonimizacijskih metod na umetno generirani zdravstveni podatkovni bazi. Bazo so sestavljali slovenski pacienti, kjer je imel vsak pacient za občutljiv osebni podatek določeno količino holesterola v krvi. Za izvajanje anonimizacijskih metod smo si pomagali s programskim orodjem ARX. Pri primerjavi metod smo merili hitrost izvajanja algoritma in kvaliteto anonimnih podatkov.

Language:Slovenian
Keywords:anonimizacija podatkov, anonimizacijske metode, avtomatizacija anonimizacije
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-102240 This link opens in a new window
Publication date in RUL:26.07.2018
Views:1906
Downloads:339
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparative study of anonymization methods on synthetically generated health database
Abstract:
By anonymizing data, we protect the identity of an individual from disclosing sensitive personal information. Hospitals store data on their patients in databases. Many of stored data is used for research purposes. According to the laws, personal data of patients must be anonymised in order to ensure the patient’s privacy. In this thesis we compared a set of anonymization methods on the synthetically generated database. The database was composed of Slovenian patients, where sensitive personal information of each patient is their cholesterol level. We used the ARX software tool to perform anonymization methods. When comparing the methods, we measured the speed of the algorithm and the quality of anonymous data.

Keywords:data anonymization, anonymization methods, automatisation of anonymization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back