izpis_h1_title_alt

Autoencoder based generators of semi-artificial data
ID Klančar, Jaka (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,62 MB)
MD5: 1C83AD7408DAC7B1D13282F8D70F9C5C

Abstract
The goal of the thesis is to alleviate the problem of insufficient data available for data analysis or machine learning. We developed a generator of semi-artificial data based on autoencoders. We implemented dynamic autoencoders without any predefined structure, as we wanted that our solution is general and may therefore be used on any data set. Results showed that autoencoder based generators work better than variational autoencoders. The generators perform best on data sets with a small number of mixed attributes and balanced classes. They perform better if more training instances are available. Results additionally show that grid search significantly improves the performance and that it is possible to predict a good set of parameters for each data set.

Language:English
Keywords:autoencoders, data generators, neural networks, semi-artifical data, variational autoencoders
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-102239 This link opens in a new window
Publication date in RUL:26.07.2018
Views:1340
Downloads:401
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Generatorji delno umetnih podatkov na podlagi samokodirnikov
Abstract:
Glavni cilj naloge je bil olajšati problem pomanjkanja podatkov pri analizi podatkov in v strojnem učenju. Razvili smo generator delno umetnih podatkov na podlagi samokodirnikov. Implementirali smo dinamične samokodirnike brez vnaprej določene strukture, saj smo želeli, da so generatorji uporabni na poljubni učni množici. Rezultati so pokazali, da generatorji na podlagi samokodirnikov delujejo bolje kot variacijski samokodirniki. Naši generatorji najbolje delujejo na podatkovnih množicah z manjšim številom atributov in z uravnoteženimi razredi. Večje število učnih primerov izboljša delovanje generatorjev. Rezultati so tudi pokazali, da z mrežnim iskanjem znatno izboljšamo rezultate in da je možno napovedati dobre parametre glede na karakteristike dane podatkovne množice.

Keywords:samokodirniki, generatorji podatkov, nevronske mreže, delno umetni podatki, variacijski samokodirniki

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back