In the dissertation, we investigate the optodynamic conversion of finite-sized laser pulses and their effects on mechanical waves in the elastic matter. We developed a mathematical model based on statistically enhanced Huygens' principle that combines appropriately weighted Green's functions from a spatially distributed source into a spatially distributed mechanical waveform. We successfully used the model in piezoelectric sensor calibration and in basic research of light-matter momentum transfer. We also studied the propagation of laser-induced mechanical waves with a laser-beam-deflection probe and a high-speed camera in a biological tissue substitute.
|