Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vektorska polja na sferah : delo diplomskega seminarja
ID
Baltič, Mark
(
Author
),
ID
Vavpetič, Aleš
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(619,93 KB)
MD5: 71048FE74C99BDB4D94698C70D84EDFA
Image galllery
Abstract
V diplomskem delu si ogledamo nekaj dejstev o obstoju neničelnega zveznega tangentnega vektorska polja na $n$-dimenzionalnih sferah. Najprej eksplicitno pokažemo konstrukcijo oz. nakažemo neobstoj takega vektorskega polja pri nižjih dimenzijah, nato pa idejo posplošimo na višje dimenzije. Pri dveh dimenzijah si ogledamo tudi druge objekte in nakažemo indikator, ki določi število izoliranih točk, kjer vektorsko polje izgine. Kot posledico glavnega izreka dokažemo tudi Browerjev izrek o negibni točki.
Language:
Slovenian
Keywords:
tangentna vektorska polja
,
sfera
,
Browerjev izrek o negibni točki
,
Eulerjeva karakteristika
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-101338
UDC:
515.1
COBISS.SI-ID:
18394969
Publication date in RUL:
30.05.2018
Views:
1758
Downloads:
298
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Hairy ball theorem
Abstract:
In this thesis we show some facts about existence of a non vanishing continuous tangent vector field on a $n$-dimensional sphere. At first we explicitly construct such vector field or we indicate the non existence of such vector field at low dimensions and then we generalize the idea to higher dimensions. In the two-dimensional case we also examine other objects and point out the indicator that sets the number of isolated points at which the vector field vanishes. As a consequence of our main theorem we also prove the Brower fixed-point theorem.
Keywords:
tangent vector fields
,
sphere
,
Brouwer's fixed-point theorem
,
Euler characteristic
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back