izpis_h1_title_alt

Vektorska polja na sferah : delo diplomskega seminarja
ID Baltič, Mark (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (619,93 KB)
MD5: 71048FE74C99BDB4D94698C70D84EDFA

Abstract
V diplomskem delu si ogledamo nekaj dejstev o obstoju neničelnega zveznega tangentnega vektorska polja na $n$-dimenzionalnih sferah. Najprej eksplicitno pokažemo konstrukcijo oz. nakažemo neobstoj takega vektorskega polja pri nižjih dimenzijah, nato pa idejo posplošimo na višje dimenzije. Pri dveh dimenzijah si ogledamo tudi druge objekte in nakažemo indikator, ki določi število izoliranih točk, kjer vektorsko polje izgine. Kot posledico glavnega izreka dokažemo tudi Browerjev izrek o negibni točki.

Language:Slovenian
Keywords:tangentna vektorska polja, sfera, Browerjev izrek o negibni točki, Eulerjeva karakteristika
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-101338 This link opens in a new window
UDC:515.1
COBISS.SI-ID:18394969 This link opens in a new window
Publication date in RUL:30.05.2018
Views:1758
Downloads:298
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hairy ball theorem
Abstract:
In this thesis we show some facts about existence of a non vanishing continuous tangent vector field on a $n$-dimensional sphere. At first we explicitly construct such vector field or we indicate the non existence of such vector field at low dimensions and then we generalize the idea to higher dimensions. In the two-dimensional case we also examine other objects and point out the indicator that sets the number of isolated points at which the vector field vanishes. As a consequence of our main theorem we also prove the Brower fixed-point theorem.

Keywords:tangent vector fields, sphere, Brouwer's fixed-point theorem, Euler characteristic

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back