izpis_h1_title_alt

Modeliranje 3D struktur interakcij med proteini in RNA : magistrsko delo
Čopar, Andrej (Author), Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://eprints.fri.uni-lj.si/2898/ This link opens in a new window

Abstract
Interakcije med proteini in RNA imajo ključno vlogo pri velikem številu celičnih procesov. Eksperimentalna analiza 3D struktur molekul je počasna in zahtevna, zato obstaja velika potreba po računskih metodah, ki uspešno napovedujejo mesta ter strukturo molekul v interakciji. V magistrskem delu smo definirali vrsto značilk, ki opisujejo lokalne lastnosti interakcij protein-RNA, na podlagi podatkov o 3D strukturah molekul protein-RNA. Razvili smo metodo, ki združuje strojno učenje in optimizacijski postopek za napovedovanje mesta interakcij med proteinom in RNA. Napovedi strojnega učenja se uporabijo za določanje začetnega stanja optimizacije. Optimizacijski postopek nato uporabi ocenjevalne funkcije osnovane na porazdelitvi 3D strukturnih značilk in tako predlaga najverjetnejšo pozicijo molekule RNA. Predlagani napovedni model dosega natančnost, ki je primerljiva z uspešnostjo najboljših obstoječih metod.

Language:Slovenian
Keywords:bioinformatika, interakcije protein-RNA, strukturna analiza, napovedni model, kombinatorična optimizacija, umestitev molekul, računalništvo, računalništvo in informatika, magisteriji
Work type:Master's thesis/paper (mb22)
Tipology:2.09 - Master's Thesis
Organization:FRI - Faculty of computer and information science
Year:2014
Publisher:[A. Čopar]
Number of pages:83 str.
UDC:004.85:575.112(043.2)
COBISS.SI-ID:1536019139 Link is opened in a new window
Views:584
Downloads:151
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Abstract:
Protein-RNA interactions have an essential role in many cellular processes. Experimental analysis of 3D molecular structure is slow and difficult process. Consequently, computational methods, which successfully predict interaction sites and molecular conformations are needed. In this thesis we have defined a number of attributes to describe local properties of protein-RNA interactions using data on 3D structure of protein-RNA molecules. We have implemented a method that uses machine learning and optimization algorithm for prediction of protein-RNA interaction sites. Machine learning predictions are used to generate initial positions for optimization. Optimization algorithm uses scoring functions based on the distribution of 3D structural attributes to identify most likely positions of the RNA molecule interacting with a given protein. The accuracy of the proposed prediction model is comparable to results obtained with best existing methods.

Keywords:bioinformatics, protein-RNA interactions, structural analysis, prediction model, combinatorial optimization, molecular docking, computer science, computer and information science, master's degree

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back