izpis_h1_title_alt

Computational approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection
Duarte, Ricardo Franco- (Avtor), Umek, Lan (Avtor), Zupan, Blaž (Avtor), Schuller, Dorit (Avtor)

URLURL - Predstavitvena datoteka, za dostop obiščite http://onlinelibrary.wiley.com/doi/10.1002/yea.1728/abstract Povezava se odpre v novem oknu

Izvleček
Within this study, we have used a set of computational techniques to relate the genotypes and phenotypes of natural populations of Saccharomyces cerevisiae, using allelic information from 11 microsatellite loci and results from 24 phenotypic tests. A group of 103 strains was obtained from a larger S. cerevisiae winemaking strain collection by clustering with self-organizing maps. These strains were further characterized regarding their allelic combinations for 11 microsatellites and analysed in phenotypic screens that included taxonomic criteria (carbon and nitrogen assimilation tests, growth at different temperatures) and tests with biotechnological relevance (ethanol resistance, H2S or aromatic precursors formation). Phenotypic variability was rather high and each strain showed a unique phenotypic profile. The results, expressed as optical density (A640) after 22 h of growth, were in agreement with taxonomic data, although with some exceptions, since few strains were capable of consuming arabinose and ribose to a small extent. Based on microsatellite allelic information, naïve Bayesian classifier correctly assigned (AUC = 0.81, p < 10-8) most of the strains to the vineyard from where they were isolated, despite their close location (50-100 km). We also identified subgroups of strains with similar values of a phenotypic feature and microsatellite allelic pattern (AUC > 0.75). Subgroups were found for strains with low ethanol resistance, growth at 30 °C and growth in media containing galactose, raffinose or urea. The results demonstrate that computational approaches can be used to establish genotype-phenotype relations and to make predictions about a strain's biotechnological potential.

Jezik:Angleški jezik
Ključne besede:kvasovka Saccharomyces cerevisiae, kvasovka, mikrosatelit, genotip, fenotip, Bayesov klasifikator, izbira sevov, odpornost na alkohol, pridelava vina
Vrsta gradiva:Delo ni kategorizirano (r6)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2009
Št. strani:str. 675-692
Številčenje:Vol. 26, no. 12
UDK:004.9
ISSN pri članku:0749-503X
COBISS.SI-ID:7367764 Povezava se odpre v novem oknu
Število ogledov:623
Število prenosov:158
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Yeast
Skrajšan naslov:Yeast
Založnik:Wiley
ISSN:0749-503X
COBISS.SI-ID:26654208 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Neznan jezik
Ključne besede:Saccharomyces cerevisiae, indigenous yeast, microsatellite, genotype, phenotype, Bayesian classifier, strain collection, ethanol resistance, winemaking

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj