izpis_h1_title_alt

Information-Theoretic Exploration and Evaluation of Models
Zibelnik, Klemen (Avtor), Žura, Marijan (Mentor) Več o mentorju... Povezava se odpre v novem oknu, Jakulin, Aleks (Avtor)

URLURL - Predstavitvena datoteka, za dostop obiščite http://eprints.fri.uni-lj.si/145/ Novo okno

Izvleček
No information-theoretic quantity, such as entropy or Kullback-Leibler divergence, is meaningful without first assuming a probabilistic model. In Bayesian statistics, the model itself is uncertain, so the resulting information-theoretic quantities should also be treated as uncertain. Information theory provides a language for asking meaningful decision-theoretic questions about black-box probabilistic models, where the chosen utility function is log-likelihood. We show how general hypothesis testing can be developed from these conclusions, also handling the problem of multiple comparisons. Furthermore, we use mutual and interaction information to disentangle and visualize the structure inside black-box probabilistic models. On examples we show how misleading can non-generative models be about informativeness of attributes.

Jezik:Neznan jezik
Ključne besede:Kullback-Leibler divergence, Bayesian model comparison, variable importance
Vrsta gradiva:Delo ni kategorizirano (r6)
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2004
Število ogledov:240
Število prenosov:101
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na: Bookmark and Share

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj