izpis_h1_title_alt

Transfer-learning enabled micro-expression recognition using dense connections and mixed attention
ID Gan, Chenquan (Avtor), ID Xiao, Junhao (Avtor), ID Zhu, Qingyi (Avtor), ID Jain, Deepak Kumar (Avtor), ID Štruc, Vitomir (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,53 MB)
MD5: F5B5619A288B2DF4085475C5E4320F78
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0950705124012747 Povezava se odpre v novem oknu

Izvleček
Micro-expression recognition (MER) is a challenging computer vision problem, where the limited amount of available training data and insufficient intensity of the facial expressions are among the main issues adversely affecting the performance of existing recognition models. To address these challenges, this paper explores a transfer–learning enabled MER model using a densely connected feature extraction module with mixed attention. Unlike previous works that utilize transfer learning to facilitate MER and extract local facialexpression information, our model relies on pretraining with three diverse macro-expression datasets and, as a result, can: ▫$(i)$▫ overcome the problem of insufficient sample size and limited training data availability, ▫$(ii)$▫ leverage (related) domain-specific information from multiple datasets with diverse characteristics, and ▫$(iii)$▫ improve the model adaptability to complex scenes. Furthermore, to enhance the intensity of the microexpressions and improve the discriminability of the extracted features, the Euler video magnification (EVM) method is adopted in the preprocessing stage and then used jointly with a densely connected feature extraction module and a mixed attention mechanism to derive expressive feature representations for the classification procedure. The proposed feature extraction mechanism not only guarantees the integrity of the extracted features but also efficiently captures local texture cues by aggregating the most salient information from the generated feature maps, which is key for the MER task. The experimental results on multiple datasets demonstrate the robustness and effectiveness of our model compared to the state-of-the-art.

Jezik:Angleški jezik
Ključne besede:computer vision, deep learning, expression recognition, microexpressions
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:14 str.
Številčenje:Vol. 305, art. 112640
PID:20.500.12556/RUL-164607 Povezava se odpre v novem oknu
UDK:004.93
ISSN pri članku:1872-7409
DOI:10.1016/j.knosys.2024.112640 Povezava se odpre v novem oknu
COBISS.SI-ID:213732355 Povezava se odpre v novem oknu
Datum objave v RUL:05.11.2024
Število ogledov:80
Število prenosov:46
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Knowledge-based systems
Založnik:Elsevier BV
ISSN:1872-7409
COBISS.SI-ID:152275459 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:računalniški vid, globoko učenje, razpoznavanje mimike, mikro izrazi

Projekti

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:AB24010317
Naslov:Guangxi Science and Technology Project

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj