izpis_h1_title_alt

Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables
ID Martindale, Christine F. (Avtor), ID Šprager, Sebastijan (Avtor), ID Eskofier, Björn M. (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,80 MB)
MD5: 5060A675F2B14102F73DC144A5FB802E
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/19/8/1820 Povezava se odpre v novem oknu

Izvleček
Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.

Jezik:Angleški jezik
Ključne besede:activity recognition, benchmark database, gait analysis, inertial measurement unit, gait phases, cyclic activities, home monitoring, smart annotation, semi-supervised learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2019
Št. strani:21 str.
Številčenje:Vol. 19, iss. 8, art. 1820
PID:20.500.12556/RUL-132338 Povezava se odpre v novem oknu
UDK:004.5
ISSN pri članku:1424-8220
DOI:10.3390/s19081820 Povezava se odpre v novem oknu
COBISS.SI-ID:31415043 Povezava se odpre v novem oknu
Datum objave v RUL:22.10.2021
Število ogledov:985
Število prenosov:149
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:16.04.2019

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:prepoznavanje, podatkovne baze

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:German Research Foundation (DFG), Heisenberg professorship program
Številka projekta:ES 434/8-1

Financer:EC - European Commission
Program financ.:EIT health innovation projects programme
Akronim:HOOP 2.0

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj