Tadej Tanšek

Načrtovanje elektronskega vezja za baterijsko napajan kuhinjski mešalnik

Diplomsko delo

Mentor: doc. dr. Marko Jankovec

Ljubljana, 2016
Zahvala

Zahvalil bi se doc. dr. Marku Jankovcu za mentorstvo in strokovno pomoč v času izdelave diplomskega dela.

Zahvalil bi se tudi svoji družini in prijateljem, ki so mi stali ob strani v času mojega študija.
Vsebina

1 Uvod .. 1

2 Tehnologija Li-ion celic .. 3
 2.1 Zgodovina .. 3
 2.2 Zgradba in oblika ... 3
 2.3 Polnjenje in praznjenje .. 4

3 Razvojne zahteve in pregled sklopov .. 9
 3.1 Pregled sklopov .. 9
 3.1.1 Univerzalni stikalni napajalnik ... 10
 3.1.2 Vezje tokovno napetostnega regulatorja ... 11
 3.1.3 Vezje za uravnoteženje napetosti celic in upravljanje motorja 11
 3.1.4 Li-ion baterije ... 11
 3.1.5 Glavni motor mešalnika ... 12

4 Načrtovanje tokovno napetostnega regulatorja ... 13
 4.1 Linearni regulatorji .. 13
 4.2 Stikalni regulatorji ... 16
 4.2.1 Predstavitev delovanja stikalnega regulatorja navzdol (step down – buck converter) .. 16
 4.2.2 Izvedba s stikalnim tokovno napetostnim regulatorjem 17

4.3 Integrirano vezje MAX1737 .. 17
 4.3.1 Delovanje MAX1737 – logični diagram .. 18
 4.3.2 Konfiguracija MAX1737 ... 21
 Nastavitev maksimalne napetosti posamezne celice baterije 21
 Nastavitev števila celic .. 21
 Nastavitev polnilnega toka ... 22
 Nastavitev/omejitev vhodnega toka .. 22
 Nastavitev časovnikov avtomata stanj .. 22

 4.3.3 Shema tokovno napetostnega krmilnika uporabljena v končnem vezju 23
 4.3.4 Izgled izdelanega vezja tokovno napetostnega krmilnika 24

5 Načrtovanje vezja za zagotavljanje uravnoteženega polnjenja in krmiljenje motorja . 25
 5.1 Aktivno uravnoteženje ... 25
 5.2 Pasivno uravnoteženje ... 26
5.3 Pregled komercialno dostopnih rešitev za uravnoteženje polnjenja.................27
5.4 Izvedba vezja za uravnoteženje in krmiljenje motorja z mikrokrmilnikom ATmega16
27
5.4.1 Izvedba premostitvenega mostiča ..28
5.4.2 Meritve napetosti posameznih celic ..30
5.4.3 Zaznavanje načina delovanja..31
5.4.4 Krmiljenje motorja mešalnika ...31
5.4.5 Delovanje programa mikroprocesorske enote za uravnoteženje polnjenja in
upravljanje motorja..32
5.4.6 Shema vezja za uravnoteženje polnjenja in krmiljenje motorja uporabljena v
končnem vezju ..36
5.4.7 Izgled izdelanega vezja za uravnoteženje polnjenja in krmiljenje motorja.......37
6 Preizkus delovanja..39
6.1 Simulacija delovanja premostitev vezja za uravnoteženje polnjenja39
6.2 Preizkus delovanja premostitev in polnjenja baterij40
6.3 Preizkus delovanja motorja..41
6.4 Ugotovitve preizkusa celotnega sistema..44
7 Sklepne ugotovitve...45
8 Literatura ...47
Seznam slik

Slika 1: Shematski prikaz polnjenja in praznjenja Li-ion baterij [3].. 5
Slika 3: Blokovna shema sklopov .. 10
Slika 4: Zunanji napetostni vir ... 10
Slika 5: Uporabljeni Li-ion baterije ... 11
Slika 6: Uporabljen motor ... 12
Slika 7: Primer enostavnega linearnega napetostnega regulatorja z uporabo nastavljivega upora za regulacijo izhodne napetosti [9] ... 13
Slika 8: Primer enostavnega linearnega tokovnega regulatorja [10] .. 14
Slika 10: Delovanje step down DC/DC stikalnega regulatorja [9] .. 16
Slika 15: Izdelano vezje napetostno tokovnega krmilnika ... 24
Slika 16: Shema za uravnoteženje polnjenja ... 28
Slika 17: Sziklai par ... 28
Slika 18: Določanje uporov premostitvenega mostiča ... 29
Slika 19: Zaznavanje načina delovanja .. 31
Slika 20: Krmiljenje motorja mešalnika ... 31
Slika 21: Logični diagram poteka programa .. 33
Slika 22: Shema vezja za uravnoteženo polnjenje in krmiljenje motorja .. 37
Slika 23: Izdelano vezje za uravnoteženje polnjenja in krmiljenje motorja .. 37
Slika 24: Simulacija delovanja premostitev – odklopljene premostitve ... 39
Slika 25: Simulacija delovanja premostitev – priklopljene premostitve ... 40
Slika 26: Sistem za merjenje tokov motorja ... 42
Slika 27: Meritev zagonega toka ... 42
Slika 28: Meritev toka prostega teka .. 43
Slika 29: Meritev kratkostičnega toka ... 43
Seznam tabel

Tabela 1: Meritve toka prek premostitev..41
Povzetek

V diplomski nalogi je predstavljeno načrtovanje vezij za delovanje prenosne polnilne baterijske mešalne naprave (blender – električni mešalnik).

V začetnem delu naloge pregledamo zgodovino razvoja Li-ion baterij, lastnosti tehnologije in z njo povezane omejitve. Pri polnjenju Li-ion baterij je zelo pomembno omejevanje toka in napetosti, ki morata biti pravilno izvedena, da ne pride do poškodb ali uničenja baterij.

Celotni sistem mešalnika sestavlja pet sklopov: zunanj stikalni napajalnik, vezje tokovno napetostnega regulatorja, vezje za uravnoteženje polnjenja ter krmiljenje motorja, baterija in krtačni motor.

Osrednji del naloge predstavlja načrtovanje in izvedba vezja tokovno napetostnega regulatorja in vezja za uravnoteženje polnjenja ter krmiljenje motorja. Kot najbolj ustrezno rešitev za izvedbo tokovno napetostnega regulatorja smo izbrali integrirano rešitev MAX1737. MAX1737 je cenovno ugodno in visoko učinkovito namensko integrirano vezje za polnjenje Li-ion baterij. Vezje za uravnoteženje polnjenja in krmiljenje motorja smo izvedli v pasivni izvedbi ob podpori mikrokrmilnika ATmega16. Ob polnjenju izvajamo meritve napetosti posameznih celic in z uporabo premostitvenih mostičev upočasnjujemo polnjenje bolj napolnjenih celic ter tako poskrbimo za uravnoteženje celotne baterije.

Ključne besede: Li-ion baterije, Li-ion polnilce, Li-ion polnjenje, uravnotežen polnilcem, stikalno omejevanje toka, stikalno omejevanje napetosti, MAX1737, baterijski kuhinjski mešalnik.
Abstract

This thesis focuses on development of electronic printed circuit boards for a battery-powered kitchen blender.

In the beginning we review the Li-ion technology, its specifications and electrical characteristics. We take a close look at charging voltage and charging current limitations. This limitations need to be closely observed and monitored to provide stable and safe operation of Li-ion cells.

The system of portable battery powered kitchen blender could be divided into five segments: external switch-mode power supply, printed circuit board of current and voltage limiter, printed circuit board of battery balancer and motor driver, blender’s main motor.

The major challenge of this thesis represent the development of printed circuit board of current and voltage limiter and printed circuit board of battery balancer and motor driver. For development of voltage and current limiter we used readily available solution MAX1737. MAX1737 is price adequate and represents high efficiency solution for charging Li-ion batteries. Battery balancer and motor driver is realized with usage of ATmega16 microcontroller, which is sensing the voltage of every single cell. In event of cell overvoltage in regarding to average cell voltage of battery, the part of the charging current is redirected through cell bypass. Use of bypass provides slower charging of individual cells end enables battery balancing.

Keywords: Li-ion battery, Li-ion charger, Li-ion charging, battery balancer, switch-mode current limiting, switch-mode voltage limiting, MAX1737, battery powered kitchen blender.
1 Uvod

V diplomski nalogi je opisan postopek razvoja vezij za krmiljenje prenosnega mešalnika in polnjenje Li-ion baterije. Na tržišču imamo na voljo mnogo baterijskih naprav, ki jih napajajo Li-ion baterije. Večina teh naprav ima odstranljive baterijske enote, ki jih polnimo na priloženih ločenih namenskih polnilnikih. Večina tovrstnih rešitev je razvitih za vzporedno polnjenje baterij, kjer je kontrola polnjenja enostavnejša, saj pri popolni napolnjenosti baterije le odklopite polnjenje. Prav tako že razviti polnilci niso primerni, ker potrebujemo integrirano rešitev za polnjenje zaporedno vezanih celic v zaprti napravi, ki bo del obsežnejšega sistema.

Sistem prenosnega mešalnika bi v grobem lahko razdelili na pet posamičnih sklopov. 1. sklop predstavlja zunanj stikalni napajalnik, katerega načrtovanje ni del te naloge. 2. sklop predstavlja prvo tiskano vezje, katerega naloga je tokovno omejevanje v času polnjenja in napetostno omejevanje ob napolnjenosti celic. 3. sklop predstavljajo Li-ion baterije in krmilna elektronika mešalnika, katere naloga je uravnoteženje napetosti posameznih celic med
polnjenjem in upravljanje motorja mešalnika. 4 sklop predstavljajo Li-ion baterije, kot 5. sklop pa je definiran glavni motor mešalnika.

2 Tehnologija Li-ion celic

2.1 Zgodovina

Razvoj Li-ion tehnologije celic ima svoje korenine v začetku 70. let prejšnjega stoletja. Prvi je tehnologijo preučeval angleški kemik M. Stanley Whittingham. Prve tovrstne celice so bile izdelane z elektrodami iz titanovega (IV) sulfida in litijevih elektrod. Zaradi visokih stroškov izdelave titanovega (IV) sulfida in hitre reakcije z vodikom ter gorljivosti litija ob prisotnosti kisika in vode je bil razvoj tovrstnih baterij ustavljen. Sledil je razvoj elektrod, kjer so litij vezali na grafit. Baterije z grafitnimi elektrodami so imele izredno slabo življenjsko dobo zaradi razpadanja in interakcij elektrolita z grafitom. Kemija, ki je omogočila komercialno izdelavo celic, je bila predstavljena leta 1979 na Univerzi v Oxfordu. Kot stabilni material za pozitivno elektrodo so uporabili litij-kobaltov oksid, ki služi kot donor litijevih ionov. Za negativno elektrodo so še vedno uporabili litij, vendar so prikazali, da za pozitivno donorsko elektrodo ni več potreben litij v kovinskem stanju. Rojstvo komercialnih Li-ion baterij je omogočil Akira Yoshino leta 1985 s predstavitvijo prototipne celice, v kateri je uporabil ogljikov material, v kateregaj je bilo moč vezati litij开采 ions ter tako pridobiti negativno elektrodo, v katero se je vstavilo pozitivno elektrodo litij-kobaltovega oksida (LiCoO₂). [1]

Leta 1991 sta Sony in Asahi Kasei začela s komercialno proizvodnjo Li-ion baterij. Z razširjanjem uporabe Li-ion baterij se je krepil tudi razvoj te tehnologije. 5 let po začetku komercialne proizvodnje baterij so predstavili nov material za pozitivno elektrodo, litij železo fosfat (LiFePO₄). Zaradi strukture materiala imajo baterije s tovrstnimi elektrodami za 25 % manjšo kapaciteto od standardnih Li-ion baterij in višjo proizvodno ceno. Njihova prednost je do desetkrat večji tok praznjenja in do petkrat daljša življenjska doba naprav LiCoO; celicam [3]. Nadaljnji razvoj je prinašal stalno izboljšanje zmogljivosti in kapacitete baterij. Leta 2014 je podjetju Amprius Corp uspelo predstaviti baterijo, katere kapaciteta je 650 Wh/L, kar predstavlja kar 20-% povečanje kapacitete glede na to kratko razvito tehnologijo celic. [1]

2.2 Zgradba in oblika

Tri glavne sestavne dele Li-ion baterij predstavljajo pozitivna in negativna elektroda ter elektrolit. Večina trenutno aktualnih baterij v proizvodnji uporablja za negativno elektrodo grafit. Pozitivno elektrodo pa predstavlja eden od naslednjih treh materialov: oksid v plasteh (npr. litij-kobaltov oksid), poli elektrolit (npr. litij-železov fosfat) oziroma spinel (npr. litij-
manganov oksid). Elektrolit je po navadi mešanica organskih ogljikov, kot so etilen karbonat in dietilen karbonat, ki vsebuje kompleksne litijevih ionov. Ker je litij močno reakтивen in z vodo reagira na litijev hidroksid in vodik, se uporabljajo elektroliti, ki ne temeljijo na vodni osnovi, baterija pa je dobro zaprta v zatesnjeno ohišje in s tem zaščitena pred vlago. Od izbire materialov, uporabljenih za izgradnjo baterije, so odvisne lastnosti baterije, kot so napetost, energijska gostota, življenjska doba in varnostne karakteristike. [1][2]

Po obliki bi Li-ion baterije lahko razdelili v štiri skupine:
- majhne cilindrične (trdo ohišje brez terminalov, uporabljene v večceličnih baterijah npr. v prenosnih računalnikih),
- velike cilindrične (trdno ohišje z velikimi navojnimi terminali),
- žepaste (mehke, ozke in ploščate, uporabljene npr. v mobilnih telefonih),
- kvadratne (trdo plastično ohišje z velikimi navojnimi terminali, uporabljene npr. v električnih avtomobilih).

2.3 Polnjenje in praznjenje

Med praznjenjem baterije migrirajo Li⁺ ioni iz negativne elektrode v pozitivno elektrodo, skozi elektrolit in ločitveno membrano. Med polnjenjem pa zunanjii električni vir – polnilno vezje vsiljuje prenapetost, kar povzroči, da tok teče v nasprotno smer. Litijevi ioni tu migrirajo iz pozitivne elektrode v negativno elektrodo, kjer se vgradijo v porozni material elektrode.
Postopka polnjenja za enocelično in večcelično baterijo se malce razlikujeta.

Pri enocelični bateriji polnjenje poteka v dveh fazah:
1. Polnjenje s konstantnim tokom.
2. Polnjenje s konstantno napetostjo.

Pri večceličnih baterijah pa je potrebno upoštevati še uravnoteženje napetosti posamezne celice in imamo zato tri korake polnjenja:
1. Polnjenje s konstantnim tokom.
2. Uravnoteženje napetosti posameznih celic (ni potrebno, ko so celice enkrat že uravnotežene).
3. Polnjenje s konstantno napetostjo.

Med fazo polnjenja s konstantnim tokom polnilec vzdržuje konstanten tok, napetost celice pa se povečuje do nivoja, ko je dosežena maksimalna napetost celice. Ko dosežemo maksimalno napetost celice oziroma maksimalno napetost zaporedno vezanih n celic (n × maksimalna napetost celice), preklopmo v način polnjenja s konstanto napetostjo. Posledično to pomeni počasno upadanje toka proti 0. Pri 3 % nazivnega polnilnega toka po navadi polnjenje prekinemo. Neupoštevanje pravilnega postopka polnjenja lahko pripelje do eksplozije celic.

Slika 1: Shematski prikaz polnjenja in praznjenja Li-ion baterij [3]
Uravnoteženje polnjenja zagotavlja vezje, ki med polnjenjem poskrbi, da se v primeru neenakomerne napolnjenosti (neenakomerne napetosti) posameznih celic hitreje polnijo celice z nižjo napetostjo. Na ta način do konca polnjenja zagotovimo enako napetost vseh celic in posledično maksimalno napolnjenost baterije.

Pojasnimamo najprej pojem C-stopnja (C-rate). C-stopnja je merilo, ki pove, s kakšnim tokom se prazni oziroma polni Li-ion baterijo. Pri 1 C se baterija z nazivno kapaciteto 1000 mAh polni s tokom 1000 mA, kar bi v idealnih razmerah pomenilo, da se baterija napolni v eni uri. Pri 1 C se ista baterija prazni s tokom 1000 mA. [7] Standardni razpon za tok polnjenja se giblja med 0,5 C in 1 C, kar pomeni, da je baterija popolnoma polna v 2–3 urah. Proizvajalci Li-ion celic po navadi predlagajo polnilni tok 0,8 C oziroma manj, z razlogom podaljšanja življenjske dobe baterij. Najpomembnejši faktor za podaljšanje življenjske dobe celic predstavlja največja napetost, do katere polnimo baterije. V primeru, da celico napolnimo od 100 mV do 300 mV manj od njene največje napetosti, lahko kar do petkrat podaljšamo njen življenjsko dobo [6]. Večino celic lahko polnimo tudi z večjim tokom od 1 C. V primeru visokih polnilnih tokov sicer
hitro dosežemo končno napetost celic (takrat je napolnjenost približno od 60−85\%, odvisno od tehnologije (največje napetosti celice)), vendar pa druga faza polnjenja s konstanto napetostjo traja dlje, da se doseže 100\%-napolnjenost. Posledično to pomeni, da se čas polnjenja za dosego nazivne kapacitete bistvene ne zmanjša [5]. Najmodernejše Li-ion baterije je možno standardno polniti s tokovi, večjimi od 1 C, in lahko dosežejo polno napolnjenost v zgolj 45 minutah oziroma manj.

Če Li-ionske baterije prenapolnimo oziroma jih pregrejemo, lahko pride do termičnega pobega, kar posledično pomeni razpad celice oziroma v ekstremnih primerih eksplozijo baterije.

Za zagotavljanje varnega delovanja posamezne celice mora imeti vsaka celica sledeče varnostne elemente:

- Termično zaščito pred pregretjem (negativna elektroda oddaja toploto med praznjenjem).
- Pokrivni kontakt, ki odklopi baterijo v primeru povišanega notranjega tlaka.
- »Ventil«, ki preprečuje povišanje tlaka v bateriji (možnost nastajanja kisika pri praznjenju na pozitivni elektrodi).
- Zaščito pred prenapetostjo in prevelikim tokom.

Vsi ti varnostni elementi posameznih celic zasedajo prostor v celici in zvišujejo proizvodno ceno, vendar so nujni za zagotavljanje varne uporabe Li-ion tehnologije celic.
3 Razvojne zahteve in pregled sklopov

Pri razvoju vezij vedno naletimo na določene omejitve in zahteve, ki so bodisi tehnološke narave bodisi jih postavlja končni produkt. Za uspešno načrtovanje in varno izvedbo smo si zastavili naslednje načrtovane zahteve:

1. Zaradi Li-ion tehnologije mora vezje tokovno napetostnega regulatorja do maksimalne napetosti zagotavljati konstanten tok polnjenja, ob dosegu te napetosti pa konstanto napetost.
2. Polnjenje mora biti kar se da hitro (0,6 C).
3. Regulacija toka in napetosti ter uravnoteženje morajo biti čim bolj učinkoviti, saj velike izgube pomenijo nezaželeno in nedopustno pregrevanje vezij.
4. Vezje za uravnoteženje in krmiljenje motorja mora biti kar se da kompaktno zaradi prostorskih omejitev končnega produkta, zagotovljena mora biti indikacija delovanja premostitev preko LED diod.
5. Izbrati je potrebno motor s čim večjim zagonskim navorom, ki omogoča, da se rezila zavrtijo pri napolnjenem mešalniku.
8. Motor mešalnika se vklaplja in izklaplja preko tipke, povezane na mikrokrmilno enoto.

3.1 Pregled sklopov

Napravo bi lahko razdelili v pet sklopov. Prvi sklop predstavlja univerzalni stikalni napajalnik, ki vezju zagotavlja potrebno enosmerno napetost za delovanje. Drugi sklop je vezje tokovno

Slika 3: Blokovna shema sklopop

3.1.1 Univerzalni stikalni napajalnik

Slika 4: Zunanji napetostni vir

3.1.2 Vezje tokovno napetostnega regulatorja

Vezje tokovno napetostnega regulatorja do maksimalne napetosti baterije (4,2 V na celico – 16,8 V skupno) zagotavlja konstanten tok, ob dosegu te napetosti pa konstantno napetost. Izvedba tega dela vezja je možna na dva načina. Prvi način je linearna regulacija, ki pri visokih tokovih, ki jih zahtevamo za polnjenje, povzroča prevelike toplotne izgube in ne zadošča zadanim zahtevam. Drugi način pa je omejevanje s stikalnim regulatorjem, ki ima visoko učinkovitost in smo ga izbrali kot ustrezno rešitev. Oba pristopa in načrtovanje sta podrobneje opisana v kasnejših poglavjih.

3.1.3 Vezje za uravnoteženje napetosti celic in upravljanje motorja

3.1.4 Li-ion baterije

Slika 5: Uporabljene Li-ion baterije

Kot Li-ion baterijo smo uporabili najbolj razširjen tip cilindrične baterije: 18650. Zaradi svojih dimenzij, zmogljivosti in ugodne cene se je izkazala kot najboljša izbira za zadani projekt. V našem primeru je kapaciteta celice 3000 mAh. Najvišja dovoljena napetost celice je 4,2 V,
najnižja napetost pa 2,75 V. Dotične baterije proizvaja kitajsko podjetje. Napajanje mešalnika sestavljajo štiri zaporedno vezane baterije.

3.1.5 Glavni motor mešalnika

Slika 6: Uporabljen motor

Izbira motorja je bila testirana tudi v kombinaciji z uporabo mešalnih rezil in se je izkazala za ustrezno. Testno delovanje je celo preseglo naša pričakovanja.
4 Načrtovanje tokovno napetostnega regulatorja

Tokovno napetostni regulator generira željeno izhodno napetost in tok iz danega vhodnega napetostnega vira. Ustrezati mora pogojem za regulacijo napetosti in toka med samim polnjenjem in med preklopom iz tokovnega v napetostni način krmiljenja. Glede na specifiko aplikacije lahko izbiramo med linearnim regulatorjem in stikalnim regulatorjem. Da bi lahko izbrali najboljšo rešitev za našo aplikacijo, pa moramo biti najprej seznamjeni z lastnostmi, prednostmi in omejitvami obeh pristopov regulacije [9].

4.1 Linearni regulatorji

![Linearni regulator](image)

Slika 7: Primer enostavnega linearnega napetostnega regulatorja z uporabo nastavljivega upora za regulacijo izhodne napetosti [9]

Linearni regulator krmili bipolarni tranzistor oziroma tranzistor FET v linearnem načinu. Na ta način tranzistor deluje kot spremenljiv upor v zaporedni vezavi z bremenom. Za vzpostavitev povratne zanke uporabimo operacijski ojačevalnik, ki zajema izhodno napetost prek napetostnega delilnika (R_A in R_B) in primerja napetost povratne zanke V_FB z referenčno napetostjo V_REF. Izhodna napetost operacijskega ojačevalnika nato prek tokovnega ojačevalnika krmili bazo tranzistorja Q1. Kadar pride do padca vhodne V_BUS napetosti ali pa se poveča tok bremena, to vpliva na zmanjšanje izhodne napetosti V_CC. Pade tudi napetost povratne zanke V_FB. Kot posledica tega padca napetosti povratne zanke V_FB se poveča napetost izhoda diferencialnega operacijskega ojačevalnika in posledično tokovni ojačevalnik v bazo tranzistorja Q1 pošlje večji tok. S tem se zmanjša napetost V_CE, kar pomeni tudi zmanjšanje izhodne napetosti U_CC, tako da je V_FB = V_REF. Na drugi strani pa povečanje izhodne napetosti
VCC povzroči, da na enak način negativna povratna vezava poveča napetost V_{CE} in tako poskrbi za natančno regulacijo izhodne napetosti.

![Slika 8: Primer enostavnega linearnega tokovnega regulatorja [10]](image)

Način linearne tokovne regulacije se razlikuje le v tem, da merimo tok prek padca napetosti na upor R_s. Prek upora R_s tudi nastavljamo želeni tok. LT1995 je uporabljen kot diferenčni ojačevalnik in zagotavlja signal napake integratorju LT1880. Integrirani signal nato krmili P-MOS tranzistor ter s tem zagotavlja želeni tok.

Linearni regulatorji so bili osnova za vse napajalnike vse do 60. let, ko so se pojavili stikalni regulatorji. Še danes se linearni regulatorji uporabljajo v mnogo vezjih zaradi svoje enostavne uporabe in nekaterih zmogljivostnih prednosti. Kot primer lahko vzamemo enostaven regulator LM317, ki ima samo 3 priključne terminal in za svoje delovanje potrebuje samo še upor in kondenzator.

![Slika 9: Primer enostavnega linearnega tokovnega regulatorja s tremi priključki [11]](image)

Glavno slabost linearnih regulatorjev lahko predstavlja veliko sproščanje moči na tranzistorju Q1, ki deluje v linearnem načinu. Kot smo že omenili, je tranzistor pri linearni regulaciji
konceptualno nastavljiv upor. Ker mora ves tok bremen prek zaporedno vezanega tranzistorja, to pomeni sproščanje moči \(P_{\text{LOSS}} = (U_{\text{IN}} - U_{\text{O}}) \cdot I_{\text{O}} \). Učinkovitost lahko zato nadalje izrazimo kot \(\eta_{\text{LR}} = U_{\text{O}} / U_{\text{IN}} \). Če za primer vzamemo regulacijo iz 12 V na 3,3 V, bi bila učinkovitost le 27,5\%, kar bi posledično pomenilo, da bi se kar 72,5 % vhodne moči porabilo za segrevanje regulatorja. Zaradi tega dejstva je pomembno, da je tranzistor dovolj močan in ima primerno velik hladilnik, da omogoča regulacijo pri najvišji vhodni nazivni napetosti in maksimalni obremenitvi.

Na drugi strani pa so lahko linearni regulatorji tudi izjemno učinkoviti, kadar je izhodna napetost regulatorja blizu vhodni napetosti. Tu smo sicer omejeni z minimalno razliko med vhodno in izhodno napetostjo, ki jo potrebuje tranzistor linearnega regulatorja za linearno delovanje. Regulatorje, ki za svoje delovanje potrebujejo majhno napetostno razliko, imenujemo linearni regulatorji z nizkim padcem (LDO – low dropout regulators). [12]

Poznamo mnogo aplikacij, kjer je uporaba linearnih regulatorjev bolj smiselna od uporabe stikalnih regulatorjev:

- **Enostavne nizkocenovne rešitve** – primerno, kadar potrebujemo poceni napajalno rešitev za manjše tokove, kjer izgubna moč ne predstavlja problemov s pregrevanjem.

- **Aplikacije, kjer je potreben majhen šum in valovitost** – predvsem za uporabo v telekomunikacijskih napravah in radijskih napravah, kjer je doseganje s stikalnimi regulatorji praktično nemogoče.

- **Aplikacije, kjer se močno in hipno spreminja obremenitev regulatorja** – linearni regulatorji imajo po navadi notranjo povratno regulacijsko vezavo in hitrejši odziv regulacije na hipne spremembe.

- **Aplikacije z nizko razliko vhodne in izhodne napetosti** – izvedba z uporabo regulatorjev z nizkim padcem (LDO – low dropout regulators) je v veliko primerih učinkovitejša od stikalne regulacije, sploh kadar potrebujemo manjše tokove.

Če zgornje trditve strnemo, vidimo, da je linearna regulacija uporabna predvsem v primerih, ko potrebujemo enostavno, nizko šumno, hitro odzivno in cenovno ugodno regulacijo.
4.2 Stikalni regulatorji

Najpomembnejša prednost stikalnih regulatorjev je njihova visoka učinkovitost. Pri stikalnih regulatorjih delujejo v stikalnem načinu namesto v linearnem. Ko je tranzistor odprt, imamo na njem minimalni padec napetosti, ko je zaprt, pa prek njega teče praktično ničen tok. Tranzistor tako lahko praktično smatramo kot stikalo, izgube pa so minimalne. Visoka učinkovitost (90 % +), majhne izgubne moči in velike moči na majhni površini vezja so glavni razlogi za uporabo stikalnih regulatorjev namesto linearnih.

4.2.1 Predstavitev delovanja stikalnega regulatorja navzdol (step down – buck converter)

Slika 10: Delovanje step down DC/DC stikalnega regulatorja [9]

Za ogled delovanja stikalnih regulatorjev bomo kot primer vzeli najbolj popularen stikalni regulator navzdol (glej sliko 10). Delovanje bi lahko razdelili v dve fazi, glede na to, ali je tranzistor Q1 odprt oziroma zaprt. Ko je tranzistor Q1 odprt, je napetost v vozlišču SW enaka $U_{SW} = U_{IN}$. Tok skozi tuljavo narašča zaradi razlike v napetosti $(U_{IN} – U_{O})$. Slika 10(a) prikazuje
ekvivalentno vezje. Ko je tranzistor Q1 zaprt, tok tuljave teče skozi diodo D1, kot je prikazano na shemi 10(b). Napetost vozišča SW je enaka 0 V, tok tuljave pa se prazni prek bremena (LOAD). Ker tuljava ne more imeti stabilne enosmerne napetosti, lahko izhodno napetost U_O izrazimo kot:

$$U_{0(DC)} = \text{AVG} [U_{SW}] = \frac{T_{ON}}{T_S} \cdot U_{IN}$$ \hspace{1cm} (1)

T_{ON} predstavlja čas, ko je stikalo odprto znotraj periode T_S. Razmerje T_{ON}/T_S definiramo kot delovni cikel D. Izhodno napetost lahko tako izrazimo kot:

$$U_{0(DC)} = \frac{T_{ON}}{T_S} \cdot U_{IN} = D \cdot U_{IN}.$$ \hspace{1cm} (2)

4.2.2 Izvedba s stikalnim tokovno napetostnim regulatorjem

Na tržišču je na voljo nekaj integriranih rešitev, ki ustrezajo našim zahtevam. V času načrtovanja tega regulacijskega sklopa vezja smo kot najbolj primerno rešitev izbrali integrirano rešitev MAX1737 podjetja MAXIM INTEGRATED.

4.3 Integrirano vezje MAX1737

Integrirano vezje MAX1737 nam ponuja vse funkcije, potrebne za polnjenje do štirih zaporedno vezanih Li-ion baterij. Integriran ima visoko učinkovit stikalni pretvornik navzdol, s katerim omejuje polnilno napetost in tok. Omogoča tudi omejevanje napajalnega toka, nadzor nad temperaturo baterije, funkcijo predpolnjenja preveč izpraznjenih baterij, indikacijo napake polnjenja in časovnike za prekinitve polnjenja. Omogoča nam reguliran polnilni tok do 4 A brez večjih toplotnih izgub in regulacijo napetosti z največjim odstopanjem 0,8 % od nastavljene vrednosti. Za fino nastavitev napetosti (+/- 5 %) na polnilnem terminalu uporablja
1 % upore. Število celic v zaporedni vezavi, ki jih želimo polniti, pa enostavno nastavimo s pravilno vezavo priključkov integriranega vezja na zemljo oziroma napajalno napetost. Kot stikali se uporabljata dva n-kanalna tranzistorja MOS.

4.3.1 Delovanje MAX1737 – logični diagram

Max1737 ima vgrajen avtomat stanj, ki upravlja algoritom polnjenja. Logični diagram je prikazan na zgornji sliki. Ko vezje priključimo na napajanje ali pa \textit{SHDN} potegnemo na napetost, se izvede ponastavitev (reset) vseh časovnikov in veje tako pripravimo za polnjenje. Iz stanja reset preidemo v stanje prekvalifikacije (prequalification), v kateri baterijo polnimo z 1/20 nastavljenega polnilnega toka ter nadziramo temperaturo in napetost baterije. Če je napetost baterije nad minimalno dovoljeno napetostjo baterije in je temperatura

![Slika 11: Logični diagram MAX1737 [13]](image-url)

Max1737 ima vgrajen avtomat stanj, ki upravlja algoritom polnjenja. Logični diagram je prikazan na zgornji sliki. Ko vezje priključimo na napajanje ali pa \textit{SHDN} potegnemo na napetost, se izvede ponastavitev (reset) vseh časovnikov in veje tako pripravimo za polnjenje. Iz stanja reset preidemo v stanje prekvalifikacije (prequalification), v kateri baterijo polnimo z 1/20 nastavljenega polnilnega toka ter nadziramo temperaturo in napetost baterije. Če je napetost baterije nad minimalno dovoljeno napetostjo baterije in je temperatura znotraj
predvidenih okvirjev, preidemo v stanje hitrega polnjenja (fast-charge). V primeru, da po preteku časovnika prekvalifikacije baterija ne preseže praga minimalne napetosti, se polnjenje prekine, \(\text{FAULT} \) izhod pa se ozemlji. Čas prekvalifikacije nastavimo z kondenzatorjem na TIMER1. V primeru, da je temperatura zunaj dovoljenega območja, se polnjenje in časovnike zaustavi, dokler se temperatura baterije ne vrne v normalne temperaturne okvirje.

V stanju hitrega polnjenja je izhod \(\text{FASTCHG} \) ozemljen, baterije pa se polnijo s konstantnim tokom. Če napetost baterije doseže limito napetosti, preden poteče časovnik hitrega polnjenja, preklopimo v stanje napolnjenosti (full-charge). V primeru, da časovnik hitrega polnjenja poteče, preden je dosežen limit napetosti, se polnjenje prekine ter se prižge indikator napake. Čas hitrega polnjenja nastavimo z kondenzatorjem na TIMER2. V primeru, da je temperatura zunaj dovoljenega območja, se polnjenje in časovnike zaustavi, dokler se temperatura baterije ne vrne v normalne temperaturne okvirje.

V stanju napolnjenosti je izhod \(\text{FULLCHG} \) ozemljen, baterija pa se polni s konstantno napetostjo. Ko polnilni tok pade pod 10 % nastavljene tokovne omejitve ali pa preteče časovnik napolnjenosti, preklopimo v stanje dopolnjevanja (top-off). V stanju dopolnjevanja se polnjenje nadaljuje s konstantno napetostjo, dokler ne poteče časovnik dopolnjevanja, kar pomeni preklop v stanje končano (done). V stanju končano je polnjenje prekinjeno, dokler napetost baterije ne pade pod napetost ponovnega polnjenja, kar posledično pomeni preskok v stanje ponastavitve in ponovitev celotnega postopka polnjenja. V primeru, da je v stanjih napolnjeno in končano temperatura zunaj dovoljenega območja, se polnjenje in časovnike zaustavi, dokler se temperatura baterije ne vrne v normalne temperaturne okvirje.
Slika 12: Stanje polnjenja in izhodi indikatorjev pri tipičnem polnilnem ciklu [13]

Slika 13: MAX 1737 PWM blok diagram [13]

4.3.2 Konfiguracija MAX1737

Nastavitev maksimalne napetosti posamezne celice baterije

Za nastavitev maksimalne napetosti na celici je potrebno priključiti napetostni delilnik na priključek VADJ, ki ga napajamo iz priključka REF. Pravilne vrednosti uporov izračunamo iz naslednjih enačb (kjer je $U_{REF} = 4,2$ V):

$$U_{ADJ} = \frac{9,523 \cdot U_{BATT}}{\text{število celic}} - 9,023 \cdot U_{REF}$$ \hspace{1cm} (3)

Sami izberemo vrednost upora R_7 (po navadi 100 kΩ) in določimo vrednost R_6 z enačbo:

$$R_6 = \left(1 - \frac{U_{ADJ}}{U_{REF}}\right) \cdot R_7$$ \hspace{1cm} (4)

Po izračunu in glede na željeno maksimalno napetost celice 4,2 V dobimo vrednost upora $R_6 = 100$ kΩ.

Nastavitev števila celic

Nastavitev števila celic je zelo enostavna. Z vezavo priključka CELL na različne napetosti določamo število celic. Število celic lahko nastavljamo med ena in štiri. Za eno celico priključek CELL povežemo na maso, za dve pustimo CELL odklopljen, za tri povežemo CELL na REF in v našem primeru za štiri celice povežemo CELL na VL.
Nastavitev polnilnega toka

Polnilni tok nastavimo s kombinacijo upora za zaznavanje toka in napetosti \(R_{18} \) ter priključka ISEOUT. Ojačevalnik zaznavanja toka meri napetost prek upora \(R_{18} \). Za dosego polnega polnilnega toka (full scale current) moramo vezati priključek ISEOUT na priključek REF, kar smo naredili tudi pri našem načrtovanju. Polni polnilni tok \(I_{FS} \) določimo s pomočjo upora \(R_{18} \) in naslednje enačbe:

\[
I_{FS} = \frac{185 \text{ mV}}{R_{12}}
\]

(5)

Glede na naše zahteve in uporabljene celice, smo izbrali vrednost upora \(R_{12} = 0,1 \) Ω, kar posledično predstavlja polnilni tok 1,85 A.

Nastavitev/omejitve vhodnega toka

S pomočjo uporovnega delilnika med REF in GND, priključenega na ISETIN, lahko omejimo največji vhodni tok, ki je lahko uporabljen med polnjenjem. Ker te funkcije ne potrebujemo, povežemo ISETIN na REF. Priključka CSSP in CSSN pa kratkostično sklenemo in povežemo na DCIN.

Nastavitev časovnikov avtomata stanj

MAX 1737 ima štiri časovnike (prequalification, fast-charge, full-charge, top-off). S priklopom kondenzatorja med TIMER1 in GND ter TIMER2 in GND nastavljamo časovne periode. TIMER1 kontrolira čas stanja prekvalifikacije, napolnjenosti in dopolnjevanja, medtem ko TIMER2 kontrolira čas stanja hitrega polnjenja. Tipični časi za polnjenje z 1 C so 7,5 minut za obdobje prekvalifikacije, 90 minut za hitro polnjenje, 90 minut za stanje napolnjenosti in 45 minut za dopolnjevanje. Ti časi ustrezajo kondenzatorjem vrednosti 1 nF. V primeru, da želimo te čase spremeniti, se poslužujemo tabel v podatkovnem listu integriranega vezja.
4.3.3 Shema tokovno napetostnega krmilnika, uporabljena v končnem vezju
4.3.4 Izgled izdelanega vezja tokovno napetostnega krmilnika

Slika 14: Shema tokovno napetostnega krmilnika uporabljenega na tiskanem vezju [13]

Slika 15: Izdelano vezje napetostno tokovnega krmilnika
5 Načrtovanje vezja za zagotavljanje uravnoteženega polnjenja in krmiljenje motorja

Uravnoteženje napolnjenosti baterij je postopek, pri katerem z meritvami napetosti celic in uporabo premostitev preko celic dosežemo enakomerno napolnjenost le teh. Prav tako baterije zaščitimo pred prenapolnjenostjo.[19] Uravnoteženje napolnjenosti omogoča tudi boljšo izrabo kapacitete vseh celic večcelične baterije in pripomore k njeni daljši življenjski dobi. [14]

Po navadi imajo posamezne celice v bateriji nekoliko različne kapacitete in stopnje napolnjenosti (SOC – state of charge). Brez uravnoteženja je potrebno praznjenje baterij prekiniti, ko je celica, ki je najmanj napolnjena oziroma ima najmanjšo kapaciteto, dosegla najnižjo dovoljeno napetost. To pomeni, da imamo šibki člen, ki omejuje energijo, ki jo baterija lahko sprejme in odda. Brez uravnoteženja predstavlja celica z najnižjo kapaciteto šibki člen. Enostavno jo prenapočimo ali preveč izpraznimo, medtem ko ostale celice baterije samo delno izpraznimo in napolnimo.

Uravnoteženje ima pravzaprav dve nalogi. Med polnjenjem baterij poskrbi, da se celice, ki imajo višjo kapaciteto, lahko popolnoma napolnijo, brez da bi se s tem prenapnili najšibkejše celice. Ob praznjenju pa poskrbi za prenos iz oziroma v posamezne celice, tako da je napolnjenost celice z najmanjšo kapaciteto enaka napolnjenosti celotne baterije.

Mnogokrat se zaradi visoke kompleksnosti dvojnega uravnoteženja uporablja le uravnoteženje med polnjenjem. To pomeni, da vse celice baterije dosežejo polno napolnjenost in je torej kapaciteta baterije omejena le s kapaciteto najšibkejše celice. [14]

Izvedbe vezij za uravnoteženje bi lahko razdelili v dva sklopa: aktivne in pasivne.

5.1 Aktivno uravnoteženje

Aktivno uravnoteženje je metoda, kjer jemljemo energijo iz ene ali več bolj napolnjenih celic in jo prenesemo na manj napolnjene celice. Ker je nepraktično hkrati zagotavljati neodvisno polnjenje za posamezne celice, je potrebno energijo razporejati sekvčno. Nekatera vezja zaradi lažje izvedbe ob popolni napolnjenosti posamezne celice odklopijo in nadaljujejo s polnjenjem celic, ki še niso polne. S tem se doseže maksimalni izkoristek kapacitete baterije. [16] [15] Aktivno uravnoteženje lahko izvajamo na dva načina:
• **Distribucija naboja s pomočjo kondenzatorja (flying capacitor)**

 S to metodo sekvenčno preklapljamo kondenzator preko vsake posamezne celice v zaporedno vezani bateriji. Kondenzator povpreči napolnjenost celic tako, da jemlje naboj z bolj napolnjenih celic in ga prenaša na manj napolnjene celice. Proces lahko pospešimo tako, da sprogramiramo ponavljajoči prenos naboj z najbolj na najmanj napolnjene celice. Učinkovitost tovrstnega uravnoteženja pada, ko se napetostne razlike med celicami znižujejo. Ta metoda uravnoteženja je precej kompleksna in draga. [16]

• **Distribucija naboja s pomočjo tuljave**

 Ta metoda uporablja transformator, katerega primarij je povezan na baterijo, sekundarij pa lahko preklapljamo med posameznimi celicami baterije. Transformator tako jemlje pulze energije celotni bateriji, namesto da bi posamezni bolj napolnjeni celici jemal energijo in jo posredoval manj napolnjenim celicam. Povprečenje napolnjenosti poteka enako kot pri metodi s kondenzatorjem, vendar tu nimamo problema z nizkimi razlikami napetosti, kar posledično pomeni veliko hitrejše uravnoteženje celotnega sistema. Tudi ta metoda predstavlja precej kompleksno in cenovno neugodno rešitev. [15]

5.2 **Pasivno uravnoteženje**

5.3 Pregled komercialno dostopnih rešitev za uravnoteženje polnjenja

Pomankanje cenovno ugodnih in enostavnih rešitev bi pripisali predvsem dejstvu, da predstavljajo vezja za uravnoteženje nišni produkt. Potrebujejo jih predvsem izdelovalci baterij, ki tovrstne rešitve načrtujejo sami oz. baterije ne potrebujejo tovrstnih vezij, saj njihovo polnjenje poteka vzporedno z uporabo namenskih polnilnikov. Končni uporabniki tako v večini kupujejo že sestavljene Li-ionske baterije.

Za naše načrtovanje bi potrebovali enostavno in cenovno ugodno integrirano vezje. Žal ustreznega vezja za uravnoteženje v času načrtovanja ni bilo na voljo, zato smo se odločili, da tovrstno rešitev izvedemo sami.

5.4 Izvedba vezja za uravnoteženje in krmiljenje motorja z mikrokrmlilnikom ATmega16

Pri izvedbi vezja za uravnoteženje posameznih celic baterije smo se odločili za pasivno izvedbo, ki je prostorsko ter cenovno primernejša za našo aplikacijo. Vezje je zasnovano tako, da že od začetka polnjenja in med njim skrbi za počasnejše polnjenje baterij z višjo napetostjo. Za dosega manjšega polnilnega toka bolj napolnjenih celic pa uporabljamo premostitvene upore, ki trošijo moč, kar je poglavita lastnost pasivnih sistemov. Poglejmo si njegovo shemo in razlago delovanja.
5.4.1 Izvedba premostitvenega mostiča

Mostič je izveden z zaporedno vezavo upora in tranzistorjev v vezavi Sziklai para [18].
Tovrstna vezava PNP in NPN tranzistorja nam omogoča, da lahko z izhodnimi napetostmi mikroprocesorja brez težav vklapljamo premostitve. S tovrstno vezavo rešujemo tudi problematiko, ki nastane ob uporabi NPN oziroma MOSFET tranzistorja. Pri NPN tranzistorju je potrebno na bazi NPN tranzistorja za odprtje zagotoviti višjo napetost, kot jo imamo na emitorski sponki. V primeru MOSFETA pa mora biti napetost vrat (Gate) višja od napetosti izvora (Source).

Tovrstna vezava se je izkazala kot najboljša rešitev, saj nam omogoča vklapljanje mostičev z enostavno vezavo baze PNP tranzistorja prek NPN tranzistorja na maso. Seveda je potrebno tokove prek tranzistorja in iz oziroma v bazno sponko omejiti, kar smo rešili z uporabo uporov, katerih izračun je prikazan v nadaljevanju.

Razčlenimo še potek izračuna vrednosti uporov na primeru premostitve tretje baterije. Postopek izračuna je identičen za ostale baterije.

\[R_{17} \approx \frac{U_{BATTMAX} - U_{CE(NPN)}}{I_{MAX}} = \frac{4,2 \text{ V} - 0,6 \text{ V}}{200 \text{ mA}} = 18 \Omega \] (6)

Kot maksimalno napetost baterije smo definirali tehnološko najvišjo napetost baterije. Za padec napetosti na tranzistorju pa smo vzeli srednjo vrednost iz podatkovnega lista tranzistorja. Ker uravnoteženje poteka že med polnjenjem, ko so napetosti baterij manjše od največje napetosti, smo za vrednost upora izbrali nižjo upornost od izračunane. S tem že med

Slika 18: Določanje uporov premostitvenega mostiča

Izračun bremenskega upora \(R_{17} \)

\[R_{17} \approx \frac{U_{BATTMAX} - U_{CE(NPN)}}{I_{MAX}} = \frac{4,2 \text{ V} - 0,6 \text{ V}}{200 \text{ mA}} = 18 \Omega \] (6)
polnjenjem zagotavljamo tokove blizu načrtovanih 200 mA. Bremenski upor ima enako vrednost na vseh premostitvah.

Izračun upora R_{20}

\[
R_{20} \approx \frac{U_{VCC} - U_{BC(PNP)} - U_{CE(NPN)}}{\frac{I_{CMA}\max}{\beta_{MIN}}} = \frac{4,2 \text{ V} - 0,6 \text{ V} - 0,6 \text{ V}}{\frac{200 \text{ mA}}{30}} = 449 \Omega \quad (7)
\]

Izračun upora R_{19}

\[
R_{19} \approx \frac{U_{BATT1\max} - U_{BE(NPN)}}{I_{CPU\max}} = \frac{5 \text{ V} - 0,6 \text{ V}}{4,4 \text{ mA}} = 1 \text{ kΩ} \quad (8)
\]

Vrednost želimo določiti, tako da bo NPN tranzistor T6 v nasičenju in da ne bomo prekomerno tokovno obremenjevali izhoda mikroprocesorske enote. Kot največji tok, ki naj bo tekel iz mikroprocesorske enote, smo vzeli 4,4 mA. Enak postopek velja za upore R_{11}, R_{16} in R_{21}.

Upori R_{18}, R_{10}, in R_{15} poskrbijo, da se PNP tranzistor ob izklopu premostitve zapre.

5.4.2 Meritve napetosti posameznih celic

Na levi strani sheme uravnoteženega polnjenja (Slika 16) smo s pomočjo napetostnih delilnikov zagotovili napetosti, ki jih lahko povežemo neposredno na analogno-digitalne pretvornike uporabljenega mikroprocesorja. Vrednosti uporov smo izbrali tako, da je napetost ne glede na to, na katerem odcepu se izvaja, vedno znotraj merilnega območja (0 V –5 V). Prav
tako smo izbrali velike vrednosti uporov in s tem zmanjšali izgube, ki nastajajo zaradi stalne priključitve uporov na baterijo.

5.4.3 Zaznavanje načina delovanja

![Slika 19: Zaznavanje načina delovanja](image19.png)

Z napetostnim delilnikom na vhodu vezja zaznavamo, ali je na vezje priklopljen tokovno napetostni regulator. Ko je regulator priklopljen na vezje, imamo na odcepu napetostnega delilnika napetost, kar zaznavamo z analogno-digitalnim pretvornikom in preklopimo v način uravnoteženja napetosti celic. V primeru, da polnilnik ni priključen, pa dioda D1 preprečuje tok skozi napetostni delilnik, zato ne zaznavamo napetosti in delujemo v normalnem načinu obratovanja mešalnika.

5.4.4 Krmiljenje motorja mešalnika

![Slika 20: Krmiljenje motorja mešalnika](image20.png)
Krmiljenje motorja je izvedeno prek MOSFET tranzistorja. Izbrali smo tranzistor IRLZ44NPBF, ki je pri napetosti 5 V na vratih tranzistorja že praktično popolnoma odprt. Prav tako so ustrezne vrednosti maksimalnega tokova (160A) in konstantne tokove obremenitve (33A). Odlikuje ga tudi zelo nizka vrednost upornosti med izvorom in ponorom, ki znaša le 0,022 Ω, kar pomeni minimalne toplotne izgube med delovanjem. Tranzistor je na mikroprocesorsko enoto priključen, tako da je omogočena tudi pulzno širinska modulacija za nadzor vrtljajev motorja, v primeru, da bi to funkcionalnost v prihodnje potrebovali.

5.4.5 Delovanje programa mikroprocesorske enote za uravnoteženje polnjenja in upravljanje motorja

Za krmiljenje smo uporabili mikrokrmilnik ATmega16, proizvajalca ATMEL. Gre za 8-bitni procesor, ki ponuja ogromno že vgrajenih perifernih enot. Za potrebe našega razvoja smo uporabili pet vhodov, vezanih na 10-bitni analogno-digitalni pretvornik, in en PWM (pulzno širinska modulacija) kanal. Za uro procesorja smo uporabili integrirani 8-MHz oscilator. Izbrali smo izvedbo v ohišju TQFP44 za površinsko pritrditev (SMD). Za programiranje smo izbrali programski jezik C. Programiranje smo izvedli prek ISP (In System Programming) vmesnika, ki se nahaja na vezju, ob uporabi programatorja AVRISP proizvajalca ATMEL.
Slika 21: Logični diagram poteka programa
Ob začetku delovanja programa najprej določimo način obratovanja mešalnika. To storimo tako, da s pomočjo analogno-digitalnega pretvornika zaznamo napetost na vhodu. V primeru, da napetost ni prisotna, bomo delovali v načinu normalnega obratovanja in sledili levi veji logičnega diagrama (Slika 21). V primeru, da zaznamo napetost, bomo delovali v načinu polnjenja in sledili desni veji logičnega diagrama (Slika 21).

V načinu normalnega obratovanja najprej poskrbimo, da so izklopljenje vse premostitve prek posameznih celic baterije in tako preprečimo praznjenje baterije. Nato preverimo, ali je stikalo za vklop motorja pritisnjeno. Če ni pritisnjeno, odklopimo motor in se vrnemo na začetek programa. Če je pritisnjeno, najprej preberemo vrednosti analogno-digitalnih pretvornikov za vsako celico (\(ADC_{BATTX_SENSE} - X\) predstavlja zaporedno številko celice) ter izračunamo vrednosti posameznih celic (\(CHG_{BATTX}\)). Za izračun napetosti posamezne celice uporabimo sledeče enačbe:

\[
CHG_{BATT4} = ADC_{BATT4_SENSE}
\]

(9)

\[
CHG_{BATT3} = 2 \cdot ADC_{BATT3_SENSE} - CHG_{BATT4}
\]

(10)

\[
CHG_{BATT2} = 3 \cdot ADC_{BATT2_SENSE} - CHG_{BATT4} - CHG_{BATT3}
\]

(11)

\[
CHG_{BATT1} = 4 \cdot ADC_{BATT1_SENSE} - CHG_{BATT4} - CHG_{BATT3} - CHG_{BATT2}
\]

(12)

\[
U_{BATTX} = CHG_{BATTX} \cdot \frac{ADC_{FULL-U-RANGE}}{2^{ADCres} - 1} = CHG_{BATTX} \cdot \frac{5 \, V}{2^{10} - 1}
\]

(13)

Za tem za vsako celico preverimo, da njena napetost ni nižja od 3 V, oziroma je \(CHG_{BATTX} > 614\). Vrednost 614 dobimo s pomočjo enačbe 13, iz katere izrazimo \(CHG_{BATTX}\), za \(U_{BATTX}\) pa vstavimo vrednost 3 V. Če imajo vse celice višjo napetost, vklopiamo motor in se vrnemo na začetek programa. V primeru, da ima vsaj ena celica nižjo napetost, pa ta motor izklopiamo in stanje izpraznjenosti baterije indiciramo s tremi utripi diode LED5 ter se vrnemo na začetek programa.

V načinu uravnoteženega polnjenja najprej izkloplimo motor in nato preberemo vrednosti analogno-digitalnih pretvornikov za vsako celico (\(ADC_{BATTX_SENSE} - X\) predstavlja zaporedno številko celice).
število celice) ter izračunamo vrednosti posameznih celic \((CHG_{BATTx})\) (glej enačbe od 9 do 12). Ker samo primerjamo napetost posameznih celic glede na povprečno vrednost celice baterije, računanje dejanskih napetosti v voltih ni potrebno. Sledi primerjava vrednosti vsake celice glede na povprečno napetost celice baterije. Če je vrednost višja od povprečne, odpremo premostitev, v nasprotnem primeru pa jo zapremo. Po preverjanju vseh štirih celic baterije se vrnemo na začetek programa.

Program je napisan tako, da ne omogoča uporabe mešalnika med polnjenjem in ščiti baterije mešalnika med delovanjem, s tem da prepreči nadaljnjo uporabo ob nizki napetosti baterij.
5.4.6 Shema vezja za uravnoteženje polnjenja in krmiljenje motorja, uporabljena v končnem vezju
Slika 22: Shema vezja za uravnoteženo polnjenje in krmiljenje motorja

5.4.7 Izgled izdelanega vezja za uravnoteženje polnjenja in krmiljenje motorja

Slika 23: Izdelano vezje za uravnoteženje polnjenja in krmiljenje motorja
6 Preizkus delovanja

6.1 Simulacija delovanja premostitev vezja za uravnoteženje polnjenja

Pred izdelavo vezja za uravnoteženje je bilo potrebno potrditi pravilnost delovanja načrtovanih premostitev. Zanimali so nas predvsem tokovi skozi baterijo in prek premostitev, ko so premostitve odklopljene in vklopljene.

Simulacijo smo izvedli v programskem okolju Multisim, ki omogoča enostavno načrtovanje simulacijske sheme in nazoren prikaz rezultatov simulacij. Ker smo želeli s simulacijo potrditi pravilno delovanje premostitev, smo izvedli simulacijo z dvema premostitvama. Vrednosti napetosti in toka smo določili tako, da odražajo stanje vezja med polnjenjem s polnim polnilnim tokom.

![Simulacija delovanja premostitev vezja za uravnoteženje polnjenja](image)

Slika 24: Simulacija delovanja premostitev – odklopljene premostitve

Iz simulacije odklopljenih premostitev (Slika 24) je razvidno, da je delovanje pravilno. Ves polnilni tok teče prek baterij, premostitve so odklopljene in prek njih tok ne teče.
Simulacija priklopljenih premostitev (Slika 25) je potrdila pravilno delovanje. Ob vklopu premostitev se je tok prek baterij zmanjšal za vrednost toka prek premostitvenih uporov. Tok skozi premostitev je znašal približno 240 mA, kar se skладa z načrtovanim tokom prek premostitev.

Izvedene so bile tudi simulacije priklopa posameznih premostitev. Rezultati simulacij so tudi v teh primerih potrdili pravilno delovanje premostitev.

6.2 Preizkus delovanja premostitev in polnjenja baterij

Rezultate simulacije premostitev smo želeli potrditi tudi na izdelanem vezju. Za potrebe merjenja toka prek premostitev smo na mikrokrmilnik naložili program, ki izmenično vklaplja prvo in tretjo ter drugo in četrto premostitev. Med meritvami je potekalo polnjenje baterij. Tok smo merili posredno prek padca napetosti na premostitvenih uporih (R\text{PREMOSTITVENI} = 16 \, \Omega) vsake od premostitev. Tok izračunamo s pomočjo sledeče enačbe:

\[I_{\text{PREMOSTITVE}} = \frac{U_R}{R_{\text{PREMOSTITVENI}}} \] (14)
Napetost baterije – izklopljena premostitev	Napetost baterije – vklopljena premostitev	Napetost na premostitvenem uporu	Tok skozi premostitev
Premostitev 1 | 3,801 V | 3,776 V | 3,608 V | 0,226 A
Premostitev 2 | 3,819 V | 3,785 V | 3,535 V | 0,221 A
Premostitev 3 | 3,953 V | 3,878 V | 3,636 V | 0,227 A
Premostitev 4 | 4,003 V | 3,929 V | 3,659 V | 0,229 A

Tabela 1: Meritve toka prek premostitev

Rezultati meritev se skladajo z rezultati simulacije, kar potrjuje pravilnost delovanja premostitev.

6.3 Preizkus delovanja motorja

Pri preizkusu delovanja smo preverili vklop in izklop motorja ter merili zagonski tok, kratkostični tok in tok prostega teka. Za izvedbo meritev smo uporabljali Tektronix tokovno sondu, ojačevalc za tokovno sondu Tektronix AM503 in digitalni osciloskop Tektronix DSA 602A.
Pri preizkusu vklopa in izklopa motorja je mikrokrmilnik pravilno sprejemal stanje tipke in vklopil oziroma izkloplil motor.

Slika 27: Meritev zagonskega toka

Slika 27 prikazuje potek toka ob zagonu motorja. S pomočjo kurzorjev smo določili vrednost zagonskega toka, ki znaša 11,44 A.
Slika 28: Meritev toka prostega teka

Slika 28 prikazuje meritev toka prostega teka motorja. Od trenutka zagona do stanja prostega teka je motor potreboval približno 400 ms. Tok prostega teka motorja je 640 mA.

Slika 29: Meritev kratkostičnega toka

Zanimalo nas je tudi, kakšni tokovi bi bili prisotni v primeru, da se rezila mešalnika zataknejo, oziroma je onemogočeno vrtenje motorja. Izmerili smo kratkostični tok motorja, ki je znašal 9,40 A.
6.4 Ugotovitve preizkusa celotnega sistema

![Slika 30: Preizkusni sistem v delovanju](image)

Ob zaključku preizkusa lahko potrdimo, da vezja delujejo pravilno in skladno z zadanimi zahtevami.
7 Sklepne ugotovitve

V diplomski nalogi smo uspešno razvili delujoč prototip elektronskih vezij za baterijsko napajanje kuhinjskih mešalnikov. Med testiranjem nismo odkrili napak, ki bi predstavljale oviro za nadaljnji razvoj in aplikacijo vezij v končni produkt.

Tiskana vezja so bila razvita v testne namene in se v tovrstni vlogi tudi odlično izkazala. Ob nadaljnjem razvoju za aplikacijo v končni produkt bi bilo potrebno dodati varnostne elemente in izvesti cenovno ter dimenzijsko optimizacijo.

Končni produkt bi potreboval varnostne elemente, ki ščitijo uporabnika in njegovo premoženje. Potrebno bi bilo integrirati varnostno stikalo, ki bi preprečevalo vklop motorja mešalnika ob neneščeni oziroma napačno nameščeni mešalni posodi. Ker imamo na majhnem prostoru vgrajen močan motor in Li-ion baterije, bi bilo potrebno dodati termistor za nadzor temperature mešalnika. S tem bi preprečili pregrevanje mešalnika zaradi predolge neprekinjene uporabe mešalnika in zagotovili dodaten varnostni element nadzora temperature baterij med polnjenjem in praznjenjem.

8 Literatura

[1] »Li-ionske baterije« Dosegljivo na: https://en.wikipedia.org/wiki/Lithium-ion_battery
[Dostopano: 28. 1. 2016].

[Dostopano: 21. 7. 2016].

[Dostopano: 28. 1. 2016].

[Dostopano: 2. 2. 2016].

[Dostopano: 2. 2. 2016].

[Dostopano: 2. 2. 2016]

[Dostopano: 11. 2. 2016].

[Dostopano: 19. 7. 2016].

