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1 Introduction

Throughout infancy and early childhood, infants gradually 

develop their motor patterns and progress to higher stages 

of cognitive development. Insight into infant developmen-

tal patterns is very important from a therapist’s and parent’s 

point of view, as it can indicate normal or atypical develop-

ment. The latter can be the result of developmental disorders, 

especially cerebral palsy (CP) and autism spectrum disorder 

(ASD), which usually develop throughout infancy and child-

hood [32]. Infants and children around the globe are affected, 

with prevalence values that range up to 116/10,000 for ASD 

[14] and up to 2.5/1,000 for CP [22, 23]. The risk is even 

higher for very low birth weight infants [29].

Developmental disorders usually result in developmental 

delays and affect infant posture, motor patterns and cogni-

tive development [32]. Asymmetrical posture, lack of sta-

bility or rotation ability [34], hypotonia, unusual posturing 

[2], along with signs of activity of tonic reflexes, especially 

spasticity of legs and arms [5, 16], and abnormal arm and 

finger movement [12], are reported as possible indicators of 

atypical development. General movements [13, 18] repre-

sent another distinct movement parameter, typically studied 

through video recordings [12, 17, 39] and computer-based 

video analysis [1, 33]. Parameters like head movement, 

asymmetrical head posture [5] and active head lifting [19, 

38] are also reported as possible indicative measures of CP 

and cognitive outcome.

Early identification and diagnosis [27] of developmental 

disorders as well as early intervention [4] are important for 

Abstract Head movement of infants is an important 

parameter for analysing infant motor patterns. Despite 

its importance, this field has received little sensory-based 

research in the past years. Therefore, we present a sensory-

supported data fusion model for head movement analysis 

of infants in supine position. The sensory system com-

prises a pressure mattress and two wireless inertial mag-

netic measurement units, rendering precise, objective and 

non-intrusive information on pressure distribution and 3D 

trunk orientation, respectively. Algorithms first perform 

pressure data pre-processing and calculate image moments 

to acquire 2D trunk orientation. Afterwards, unscented 

Kalman filter is used for sensory data fusion. After addi-

tional data processing, head and trunk coordinates are cal-

culated along with head displacement distance. The sen-

sory system was tested on experimental measurements, 

performed in eight normally developing infants aged from 

1 to 5 months. Results of several algorithm combinations 

were compared to referential video recordings in terms of 

head lifts. Combination of algorithms, incorporating head 

tracking and sensory data fusion provides completely accu-

rate results in comparison to normative data. Statistical 

data analysis and referential optoelectronic measurements 

were performed to evaluate accuracy of the sensory fusion 

model. Suitability of the proposed sensory system for 

head movement analysis of infants in supine position was 

verified.
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quality rehabilitation. Researchers are therefore reviewing 

[27, 40] indicative parameters and preparing questionnaires 

[30], tests [6, 7] and evaluations [9] in order to increase 

the percentage of correct diagnoses. Acquisition of posture 

and movement data is usually supported by various sen-

sory systems, such as video cameras [34], passive marker-

based optical systems [26], inertial magnetic systems [35], 

accelerometers [20], force platforms [24] and pressure mat-

tresses [10, 11].

Even though head movement is clearly as important 

as trunk posture and other aforementioned parameters, 

the field of sensory-based head movement research has 

received little attention over the past years. Rönnqvist et al. 

[31] studied head position preference of infants using a 

custom-built platform, focusing on head orientation around 

one axis. Lee et al. [25] focused on advances in head con-

trol due to intensive postural training through a system that 

provided information on three dimensional head position. 

Franchak et al. [15] analysed the gaze of older infants by 

developing a head-mounted eye tracking device. Despite 

the high precision of the Vicon system [25] and video cam-

eras, all the listed experiments suffer from disadvantages 

such as invasiveness of the measurement systems (marker 

arrays, belts, holders and impracticality of head-mounted 

systems), self-occlusion problems of optical markers [26] 

and the need for laboratory-based settings [31] with com-

plex and expensive components.

The main goal of this paper is to present a novel sen-

sory system-based computer model for accurate, objec-

tive and non-invasive head movement analysis of infants 

in supine position. Non-invasive assessment of infant head 

movement is of paramount importance for observing child 

responses linked to child development. First, the sensory 

system comprising a pressure mattress and two wireless 

inertial magnetic measurement units (IMUs) is described. 

The system is proposed to overcome the aforementioned 

disadvantages and address the lack of research in the field 

of head movement. Afterwards, data processing and sen-

sory fusion methods used for infant trunk posture estima-

tion and head position assessment are described. Statistical 

data analysis and referential measurements are performed 

to evaluate the accuracy of the proposed sensory system 

for head movement assessment in terms of head lifts and 

medial–lateral movement.

2  Methods

This section is organised as follows. First, hardware of the 

experimental set-up and the measurement procedure are 

presented. Afterwards, the implemented methods and algo-

rithms are described. Finally, a description of the system 

validation procedure is given.

2.1  Hardware

2.1.1  Pressure mattress

A pressure mattress (CONFORMat® System, Model 

5330, Tekscan, Inc., USA) was used for pressure distribu-

tion measurements. The mattress has a total of 1,024 pie-

zoresistive pressure sensors (32 × 32) and dimensions of 

47.1 cm × 47.1 cm, resulting in an approximate resolution 

of 0.5 sensors per cm2. Sensors are 0.8 mm thick, while the 

pressure range of each sensor is 34 kPa.

2.1.2  IMU

Orientation of the infant relative to the mat was acquired 

using two wireless IMUs, custom built by our research 

group and thoroughly described in [3]. Each IMU com-

prises a three-axis gyroscope (InvenSense, Inc., USA), a 

three-axis accelerometer (STMicroelectronics, Switzer-

land) and a three-axis magnetometer (Honeywell, USA). 

The gyroscope has a full-scale range of ±500°/s and 16-bit 

resolution, the accelerometer ±2 g and 16-bit resolution 

and the magnetometer has a full-scale range of ±1.4 G and 

12-bit resolution. Such an assembly provides precise infor-

mation on angular velocities, acceleration and magnetic 

field in the local sensor coordinate system. IMU orientation 

is determined using an unscented Kalman filter, which is 

described in further detail in the section Software.

2.1.3  Video cameras

Four digital USB video cameras (Webcam C210, Logitech, 

USA) with resolution 320 pixels × 240 pixels, view angle 

53° and sampling rate of 10 Hz were used for referential 

recording of measurement sessions.

2.2  Measurement procedure

2.2.1  Subjects

Eight infants aged from 1 to 5 months participated in the 

study. All the infants were developing normally and were 

healthy. They were recruited from a private paediatrician 

clinic at San Piero a Grado (Pisa, Italy). The measurement 

sessions were approved and overseen by the therapists from 

IRCCS Fondazione Stella Maris, while the proper informed 

consent was also obtained from the parents. At least one of 

them was present throughout the measurement session.

2.2.2  Experimental set-up

Infants were placed on the pressure mattress in supine posi-

tion, as it is presented with a doll in Fig. 1. The first IMU 
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was placed near the pressure mattress with a matching ori-

entation and served as a referential sensor (see Fig. 1). Dur-

ing the measurement sessions, this sensor was not moved. 

The second IMU was put inside a specially designed brace-

let that was placed around the infant’s chest (see Fig. 1). 

Digital video cameras were placed above each corner of the 

experimental set-up to capture the majority of the infants’ 

movements and actions, thus providing reference informa-

tion for post-session data reviewing. Small speakers and 

various colour LED lights were set on both sides of the 

pressure mattress and turned on in a predefined sequence to 

encourage infant movement and activity. White sheets were 

hung around the experimental set-up to prevent external 

disturbances such as infant–mother eye contact.

2.2.3  Measurement protocol

In total, approximately 40 min of measurement data were 

acquired, with each infant’s measurement duration being 

approximately 3–7 min depending on infant’s cooperation. 

Data were acquired simultaneously, with 10 Hz sampling 

rate for the pressure mattress and 100 Hz sampling rate for 

the IMUs, and were synchronously processed online using 

a computer model. Raw sensor data and all the correspond-

ing time stamps were stored on a personal computer hard 

drive for additional synchronised post-processing offline.

2.3  Software

2.3.1  Design of the computer model

The computer model is designed and implemented in the 

mathematical computer programs MATLAB®—Release 

2011b, version 7.13 and Simulink—Release 2011b, version 

7.8 (The MathWorks, Inc., USA). Sensory data inputs to 

the computer model are three-dimensional: angular veloc-

ity, acceleration, and magnetic field vectors, along with a 

square-shaped 1,024 element pressure matrix (32 × 32 ele-

ments). The pressure matrix is basically a greyscale digital 

image with values from 0 to 255. Pressure data are usually 

subject to bias and crosstalk and should therefore be pro-

cessed with digital image processing techniques, such as 

noise removal, comparison to thresholds and segmentation. 

On the other hand, angular velocity, acceleration, and mag-

netic field vectors can be processed with sensory fusion 

techniques, such as unscented Kalman filter, to determine 

the approximate sensor (trunk IMU) orientation. Unfortu-

nately, the trunk IMU can occasionally be displaced (mini-

mally rotated) during a measurement session, which can 

result in differences among infant trunk orientation and the 

trunk IMU orientation.

Precise orientation of the infant trunk is relevant for 

the head movement analysis for two reasons. First, exact 

trunk orientation is very important in the process of pres-

sure mattress data segmentation, as it helps determine the 

approximate head–feet orientation. This is important for 

recognition of the head imprint patch and subsequent deter-

mination of head movement and head lifts. These param-

eters importantly describe the level of infant’s activity and 

could indicate possible developmental delays. Due to the 

large variability of pressure mattress data, novel reliable 

and robust head imprint search algorithms are needed. Sec-

ond, exact trunk orientation determines the trunk midline, 

which is important for calculation of head displacement 

and subsequent analysis of possible asymmetries in the 

head–trunk posture. To avoid the shortcomings of the inac-

curate trunk IMU orientation, use of the image processing 

techniques (image moments calculation) on the pressure 

mattress data and subsequent combined use of the pres-

sure and IMU data are proposed as a solution to the given 

problem. Image moments are basically a weighted average 

of the image pixel intensities and can be used to describe 

centroid, area, orientation and other parameters of image 

patches. In our application, calculation of image moments 

on an isolated trunk imprint patch could provide additional 

information on the trunk orientation and determine the 

trunk midline.

The proposed processing procedure comprises several 

consecutive modules (see Fig. 2) as follows. First, pressure 

image moments calculation is performed to determine the 

two-dimensional trunk orientation (Φ) on the pressure mat-

tress. The calculated orientation and IMU data are further 

processed in an unscented Kalman filter to improve the 

accuracy and thus calculate the exact three-dimensional 

trunk orientation. The image processing module performs 

detailed pressure imprint data analysis, combining the 

Fig. 1  Experimental set-up, where the doll is equipped with the trunk 

IMU and placed in supine on the pressure mattress, while the referen-

tial IMU is placed in parallel with the pressure mattress
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original pressure image and the trunk orientation. Finally, 

head and trunk coordinates, along with head displacement 

from the trunk midline, are determined as computer model 

outputs using the image processing techniques.

2.3.2  Image moments calculation

Calculation of image moments represents the first mod-

ule of the computer model (see Fig. 2) and is needed for 

improving the accuracy of the three-dimensional trunk ori-

entation. It represents the core of the presented methodol-

ogy and is important especially in cases of unexpected 

trunk IMU displacement, when IMU is no longer aligned 

with the infant’s longitudinal axis. Image moments cal-

culation module comprises several consecutive steps (see 

lower left part of Fig. 2). Pre-processing of pressure data 

using the triangle-based linear interpolation is first applied 

to increase the quality and resolution of the pressure image 

(built-in MATLAB library function griddata). After-

wards, the two-dimensional eight-connected connectivity 

method (bwconncomp) is used for grouping pressure data 

into imprint patches. Properties of image regions, such as 

centroids, areas and loads, are extracted with the imprint 

patch analysis (regionprops). Imprint patch properties are 

compared to the preset area (10 pixels) and load thresholds 

to determine the insufficiently loaded imprints. Pixel load 

threshold is approximately 10 % of the output sensor range 

and is determined as the bias values of the unloaded pres-

sure mattress data.

Imprint patches in the proximity of the calculated cen-

tre-of-pressure (COP) coordinates are combined into the 

largest and heaviest imprint patch and thus recognised as 

the trunk imprint. Proximity area dimensions are adapted 

with regard to the approximate three-dimensional trunk 

IMU orientation. At this point, data processing continues 

by increasing contrast of the trunk pressure data to suffi-

ciently emphasise the trunk imprint orientation. Pressure 

data corresponding to infant’s trunk imprint, already pre-

processed, are further used for calculation of raw M and 

central µ image moments of order up to two. A discrete ver-

sion of the Eq. (1) is used instead of the original ones pub-

lished by [21].

In (1), I(x, y) represents the greyscale image pixel intensi-

ties, x and y are the column and row indices and p and q are 

the moment orders.

A covariance matrix of the normalised second-order 

central moments is constructed, whereas its eigenvectors 

correspond to major and minor axes of the image. Orienta-

tion can therefore be calculated by (2) and is valid as long 

as µ11 is different from 0. Such an orientation could also 

be obtained by calculation of the first principal component 

(PCA) of the data. Angle Φ will thus be named “PCA” in 

the presentation of results.

(1)

Mpq =
∑

x

∑

y

xpyqI(x, y)

µpq =
∑

x

∑

y

(x − x̄)p
(y − ȳ)qI(x, y)

(2)Φ = arctan

(

2µ11

µ20 − µ02

)

Fig. 2  Block diagram of the computer model, where RPY represents roll-pitch-yaw (RPY) angles of the three-dimensional trunk orientation, 

COP depicts COP coordinates of the pressure image and angle Φ denotes the two-dimensional trunk orientation on the pressure mattress



MEDICAL & B IOLOGICAL ENGINEERING & COMPUTING, 2015 163

127Med Biol Eng Comput (2015) 53:123–135 

1 3

In (2), Φ is the angle corresponding to orientation of the 

major axis of trunk imprint in the image, while µ11, µ20 and 

µ02 are the central moments of order up to two.

Exact determination of the trunk imprint is sometimes 

impossible. In case an infant arches its back, only head, 

feet or arm imprints are detectable in the pressure data. 

Insufficient trunk imprint load in comparison to the preset 

load threshold results in an inability to calculate the image 

moments. In other cases, when an infant simultaneously 

raises its head and feet, the trunk imprint is short and cir-

cularly shaped. Distinct shape and insufficient major axis 

length of the trunk imprint (shorter than 40 pixels) again 

result in an inaccurate trunk orientation. Therefore, the 

pressure data-based orientation is not forwarded to the 

UKF in these cases. To retain functionality of the system, 

the IMU sensory data and the last accurately determined 

IMU displacement are used as an approximation for orien-

tation calculation and further processing.

2.3.3  Unscented Kalman filter

The UKF is an algorithm for estimation of non-linear sys-

tems and represents an upgrade to the more frequently used 

extended Kalman filter (EKF). Along with a few additional 

calculations, it represents the second module of our com-

puter model (see Fig. 2). A detailed presentation, compari-

son and description of the UKF and EKF are available in 

[8, 36, 37]. UKF incorporates the unscented transforma-

tion to approximate a Gaussian distribution of a non-linear 

function. This is done by determining a carefully chosen 

set of sigma-points to capture the mean and covariance of 

the random variable. The core of our UKF can be divided 

into initialisation, time update and measurement update. 

The last two are also referred to as prediction and correc-

tion steps [36]. Throughout the UKF, quaternions are used 

for orientation description.

The initialisation phase is performed, while the IMUs 

are in standstill. First, gyroscope biases are calculated as 

the median values of a 1-s long interval for gyroscope out-

put data. Second, angular velocity, acceleration and mag-

netic field vectors are normalised by dividing the values 

with the vector norm and recalculating the data to SI units. 

Finally, initial orientation of the IMU relative to the Earth 

coordinate system is determined by calculating the cross 

product of acceleration and magnetic field vectors. An 

additional cross product of the acceleration vector and the 

aforementioned cross product result define the third axis of 

the coordinate system, consequently fully defining the IMU 

orientation. Process noise, observation noise and initial 

state covariance matrices are calculated for further use in 

time and measurement-update equations. This is followed 

by determination and propagation of sigma-points through 

process and measurement models.

The process model relates the current state to the state 

at a previous time sample. Therefore, during the prediction 

step, the quaternion is updated by integrating gyroscope 

data. In other words, current state and covariance are pro-

jected ahead and forwarded to the measurement model.

In the measurement model, the predicted current state is 

corrected in relation to the measurements of accelerometer 

and magnetometer. By computing the Kalman gain, state 

and covariance values are updated and corrected quaternion 

is determined. This quaternion represents rotation from the 

IMU to the Earth coordinate system.

By quaternion multiplication, rotation from the trunk 

IMU to the referential IMU coordinate system is acquired. 

This is followed by transformation of quaternions to roll-

pitch-yaw (RPY) angles, representing rotation around the 

infant’s cranial–caudal, medial–lateral and ventral–dorsal 

axes, respectively.

Whenever pressure data are suitable for orientation 

determination, the range of Φ angle is adjusted and both 

angles (yaw and Φ) are compared. When necessary, the dif-

ference between yaw and Φ is calculated, and the estimated 

trunk IMU quaternion is correspondingly updated around 

its ventral–dorsal axes. RPY angles are recalculated and 

provide the image processing module with the 3D trunk 

orientation description.

2.3.4  Image processing

Image processing is the third module of the computer 

model and serves for detailed infant imprint data analysis 

(see Fig. 2). Inputs into the module are as follows: pressure 

matrix, accurate three-dimensional trunk orientation (RPY 

angles) and head coordinates of the previous time frame 

(see the head-tracking algorithm description for more 

details).

The pressure image is first rotated in order to align the 

trunk orientation (head up) with the orientation of the pres-

sure mattress. This is done to simplify later calculation of 

coordinates relative to the trunk orientation. Afterwards, 

the pressure matrix is interpolated using the triangle-based 

linear interpolation method. Very small artefacts, presum-

ably deriving from small crosstalk of the pressure mattress, 

are filtered from the image with a specially designed noise 

removal algorithm as follows. The algorithm first calcu-

lates the differences between the minimum and the maxi-

mum pixel load values for each imprint patch. All image 

regions with difference values lower than 5 % of the sen-

sor output range are considered as crosstalk and conse-

quently removed. COP coordinates of the entire image are 

calculated.

Pressure data are labelled and grouped into imprint 

patches through search for the connected compo-

nents (bwconncomp), while the imprint data analysis 
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(regionprops) is implemented for determination of patch 

properties, such as area, load and position.

Patches in the proximity of COP are grouped and iden-

tified as the trunk imprint, being the largest and heaviest 

patch. Trunk coordinates are determined as this patch COP 

(see Section Image moments calculation for more details 

on the trunk imprint recognition procedure).

Hereafter, the computer model proceeds with the head 

imprint search and the head coordinates calculation. This 

is performed with three head search algorithms as follows. 

Firstly, the line-of-sight algorithm is applied, selecting 

appropriate patches in the proximity of the approximate 

shoulder positions. Whenever the head is found success-

fully, the head-tracking algorithm is applied for processing 

of the following frames, until the head is lifted (the imprint 

disappears) or the trunk and the head imprints connect 

(sufficient trunk imprint length). The first option resets the 

head tracking, and the head search proceeds with the line-

of-sight algorithm. In the second case, use of head track-

ing would eventually result in drift towards the trunk COP 

due to connection of imprints. Therefore, head tracking is 

now omitted and the head imprint search is performed with 

the histogram analysis. In case trunk and head imprints are 

separated again, the head search returns to the line-of-sight 

algorithm.

2.3.4.1 Line-of-sight algorithm The line-of-sight algo-

rithm firstly identifies the approximate chest position of 

the infant’s imprint. This point is determined with respect 

to known COP coordinates, trunk longitudinal axis orien-

tation and an approximate distance from infant’s abdomen 

to shoulders. Afterwards, the algorithm searches for all the 

patches within the area, determined as 50° left and right of 

the trunk orientation direction. Head imprint is recognised 

as the most loaded imprint patch and its coordinates are cal-

culated. Additionally, the area of the selected imprint patch 

must be smaller than 500 pixels and the distance of the cor-

responding centroid to the shoulder position must be lower 

than 30 pixels. Imprint patches with very small area and 

load values are removed from the selection. This is imple-

mented in view of avoiding head imprint misidentification.

2.3.4.2 Head-tracking algorithm The head-tracking algo-

rithm is based on the premise that head movements have 

limited dynamics. In case the head is recognised using the 

line-of-sight algorithm, head tracking is activated and the 

head coordinates are rerouted to the computer model for 

processing of the next frame (see Fig. 2). As part of the next 

frame processing, an area of sufficient dimensions is set 

around the last determined head coordinates and COP of the 

imprint inside the area is calculated. Since the head imprint 

has limited dynamics, these coordinates directly determine 

the head position in the current time frame. If the head 

imprint disappears, while the head and trunk imprints are 

not connected, both head coordinates are set to zero, indi-

cating a head lift. In case both imprints connect, the head 

tracking is switched off and the head search proceeds with 

the histogram analysis.

2.3.4.3 Histogram analysis In case the trunk imprint is 

longer than a preset buttocks to shoulders distance thresh-

old (adapted with respect to the roll angle) and the head 

patch was not found with the line-of-sight algorithm, this 

indicates connected imprints of the head and the trunk. This 

usually occurs when an infant is dressed in a baby dress 

with a hoodie or when an infant starts slowly lifting its head. 

In such cases, vertical histogram of the pressure image is 

calculated. Position of the first peak in the vertical direction 

(cranial–caudal axes) is extracted to determine the vertical 

head coordinate. Another horizontal histogram is calcu-

lated in the neighbourhood of the vertical head coordinate, 

whereas its peak determines the horizontal head coordinate.

After determination of the absolute head and trunk coor-

dinates, the distance of head displacement perpendicular 

to trunk midline is calculated. Since the pressure image 

is still aligned to the vertical axis, head displacement is a 

mere deduction of horizontal head and trunk coordinates. 

Negative and positive values thus indicate head displace-

ment towards right and left side, respectively. Finally, the 

pressure image and the calculated coordinates are rotated 

back to the original orientation, the pressure image is dis-

played, head and trunk coordinates are labelled and the 

trunk orientation is indicated (see Fig. 3). Head displace-

ment distance (see Fig. 3) and all the calculated coordinates 

are stored along with the corresponding time stamps for 

post-processing.

2.3.5  Data analysis

The acquired data were additionally post-processed offline 

with MATLAB® software and built-in functions (given in 

parentheses). Connectivity algorithm (built-in function 

bwconncomp) was applied on one of the head coordinates 

to group non-zero and zero data into signal segments and 

determine the total number of head lifts and their dura-

tion. Video recordings were carefully reviewed to acquire 

the number of actual head lifts performed. Head displace-

ment data were analysed by calculating maximum left and 

maximum right displacements that represent the range-of-

motion limits. Median (median), mean (mean) and stand-

ard deviation (SD, std) values were extracted to analyse 

the data for asymmetry. Kurtosis (kurtosis) and skewness 

(skewness) parameters were calculated with (3) and (4), 

as they additionally describe deviance from the Gaussian 

distribution. Kurtosis indicates how outlier-prone a distri-

bution is, while skewness is a measure of data asymmetry 
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around the sample mean. Kurtosis and skewness values of a 

normal distribution are 3 and 0, respectively. Kurtosis val-

ues for more and less outlier-prone distributions have val-

ues either greater or smaller than 3. Skewness values are 

either positive for data values spread out to the right or neg-

ative for data values spread out to the left.

In (3) and (4), µ and x̄ represent mean value of the input 

data vector x, σ is the standard deviation, E(t) represents 

expected value of the quantity t and n represents quantity of 

the input data x.

Root-mean-square (rms) displacement and approximate 

entropy were calculated to describe the variability and 

complexity of head displacement time series. Both param-

eters were already used and verified in infant COP move-

ment analysis and diagnosis of CP [11, 24] and therefore 

seem potentially useful for illustrating the signal charac-

ter. A detailed explanation and discussion on approximate 

entropy can be found in [28]. To acquire a value indicat-

ing head activity, travelled distance l was calculated by (5), 

(3)k =
E(x − µ)

4

σ 4
=

1

n

n
∑

i=1

(xi − x̄)4

(

1

n

n
∑

i=1

(xi − x̄)2

)2

(4)
s =

E(x − µ)
3

σ 3
=

1

n

n
∑

i=1

(xi − x̄)3

(√

1

n

n
∑

i=1

(xi − x̄)2

)3

where l is the travelled distance, n is the last frame of meas-

urement session and x and y are the horizontal and vertical 

head coordinates, respectively.

Head movement rate was calculated by dividing the trav-

elled distance l by duration of the measurement session.

2.4  System validation

Referential optoelectronic measurement system OptoTrak 

Certus (Northern Digital Inc., Waterloo, ON, Canada), pro-

viding position accuracy of 0.1 mm at the sampling rate of 

100 Hz, was used to validate the proposed measurement 

system (pressure mattress and two IMUs) for accuracy and 

reliability. A dedicated baby doll (see Fig. 1) with realistic 

anthropometric characteristics (weight, height and segment 

lengths) was used as a test subject, being equipped with 

one IMU on the trunk and three infrared emitting diodes as 

active markers on the face (one on the forehead and one on 

each cheek). Test subject was placed on the pressure mat-

tress in supine position and spontaneous head movement 

was simulated as follows. Head of the baby doll was moved 

similar to the head movements, extracted by the careful 

review of the video recordings. Most of the movement was 

performed in the dominant direction (medial–lateral), con-

sidering the calculated head movement range values for 

the acquired healthy infant measurement data. One IMU 

was used as reference and was placed in parallel with the 

pressure mattress (see Fig. 1). Head position was simulta-

neously calculated from OptoTrak marker position data as 

the projected approximate head centre-of-mass and sen-

sory fusion of pressure mattress data and IMUs as the head 

imprint COP coordinates. Comparison for each coordinate 

was performed and absolute errors of position determina-

tion were calculated for both axes. Accuracy of position 

data and adequacy of the proposed sensory system were 

statistically analysed by calculation of Pearson correlation 

coefficients for each axis.

3  Results

This section first provides the head movement results for 

measurement sessions of eight subjects. This is followed 

by presentation of the validation results obtained by the 

proposed sensory system and compared to referential 

OptoTrak data.

Head movement data, acquired by the proposed meas-

urement system, are presented in terms of head lift, head 

displacement and head movement distance analysis (see 

(5)l =

n
∑

i=2

√

(xi − xi−1)
2 + (yi − yi−1)

2

Fig. 3  Interpolated pressure matrix data with indicated trunk orienta-

tion (red line), head displacement distance (yellow line) and angle Φ 

(green lines). Referential IMU coordinate system Rref is shown in the 

lower left corner, Rtrunk denotes the trunk coordinate system and trunk 

and head coordinates are labelled with black text (colour figure online)
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Table 1). According to the analysis of referential video 

recordings, eight infants generated six head lifts in total. 

This number is compared to the head lift results, deter-

mined by the analysis of pressure mattress and IMU data. 

In case that only IMU data is used for trunk orientation 

determination, the total number of detected head lifts 

exceeds 100 head lifts. With implementation of the sensory 

fusion algorithm, which combines the IMU and pressure 

mattress data for trunk orientation determination, the total 

number of detected head lifts is reduced to around 50. In 

case that the head tracking algorithm is used in combina-

tion with the sensory fusion method, the total number of 

detected head lifts is 6.

Head displacement data, determined by the optimum 

combination of algorithms, were analysed statistically 

for all eight infants (see Table 1). Median head displace-

ment for infant #1 was lowest with a value of −9.6 cm 

(see Table 1). Data for infant #1 were highly dispersed (in 

the range of 20 cm) with the largest range-of-motion (see 

Fig. 4 and right part of Fig. 5). Head displacement data of 

infant #4 had small value dispersion (in the range of 10 cm) 

with a mean value of 0.8 cm. Dispersion of values for the 

other infants was mostly around 10 cm with median values 

near the trunk midline in the range of −2 to +2 cm (see 

Fig. 4).

Head movement is evaluated with the movement dis-

tance and movement rate parameters, indicating level of 

head activity (Table 1). Infant #7 had the smallest head 

movement rate of 0.6 cm/s, while infant #3 was most active 

with the head movement rate of 1.8 cm/s.

Head coordinates for infant #5 are provided in rela-

tion to time and as a function of one another to demon-

strate the typical head movement of infants (see Fig. 6). 

The goal is to assess the head movement characteristics in 

order to appropriately simulate head movement of the dedi-

cated baby doll. The movement exhibits dominance in the 

Table 1  Results of statistical 

data analysis
Infants 1 2 3 4 5 6 7 8

S
es

si
o

n
 d

u
ra

ti
o
n

Session duration [s] 240.9 235.9 159.3 323.5 243.7 451.1 313.0 278.1

Head lifted [s] 4.1 1.8 0.0 0.0 0.0 0.9 3.0 0.0

Head down [s] 236.7 234.1 159.3 323.5 243.7 450.2 310.0 278.1

H
ea

d
 l

if
ts

N
H

T IMU 2 1/* 0 33 1 71/* 22/* 0

IMU and PCA 33 3 0 1 5 3 1 1

H
T

IMU 1 3 0 2 1 247/* 15/* 0

IMU and PCA 1 3 0 0 0 1 1 0

Video (reference) 1 3 0 0 0 1 1 0

H
ea

d
 d

is
p

la
ce

m
en

t

H
T

, 
IM

U
 a

n
d

 P
C

A

Maximum left [cm] 9.0 6.5 5.4 5.5 16.8 11.3 7.3 15.6

Maximum right [cm] –17.1 –7.0 –6.7 –5.1 –7.8 –5.1 –5.9 –0.7

Median [cm] –9.6 –1.2 –0.7 0.7 0.6 1.5 0.6 1.5

Mean [cm] –8.2 –1.4 –0.8 0.8 0.9 1.8 0.9 1.8

Standard deviation [cm] 4.9 1.6 1.1 1.4 2.5 2.0 1.2 1.8

Kurtosis 2.6 4.2 12.2 4.9 13.8 5.0 10.1 27.0

Skewness 0.7 –0.1 –1.1 –0.1 2.4 0.3 1.3 4.6

RMS displacement [cm] 9.6 2.2 1.3 1.6 2.7 2.7 1.4 2.6

Approximate entropy 0.3 0.6 0.4 0.4 0.4 0.5 0.4 0.3

H
ea

d
 c

o
o

r
d

in
a

te
s

H
T

, 
IM

U
 a

n
d

 P
C

A

Head movement 

distance l [cm]
201.0 297.4 282.0 343.6 320.3 429.8 194.9 222.7

Head movement 

rate [cm/s]
0.8 1.3 1.8 1.1 1.3 1.0 0.6 0.8

NHT indicates analysis without 

the head-tracking algorithm, HT 

indicates inclusion of the head-

tracking algorithm

* Indicates that the head patch 

was found incorrectly and IMU 

and PCA indicates that the 

IMU orientation was corrected 

by the image moments (PCA) 

orientation data
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medial–lateral direction (see Fig. 6). Horizontal (x axis) 

and vertical (y axis) ranges-of-motion are approximately 

±5 and ±1 cm, respectively.

Finally, validation results are presented as comparison 

of the head coordinates obtained by OptoTrak and the pro-

posed sensory system (see Fig. 7a, b). The graph is scaled 

according to the pressure mattress dimensions. Horizontal 

(x axis) and vertical (y axis) ranges-of-motion are approxi-

mately ±5 and ±2 cm with few larger excursions (see 

Fig. 7a, b). Absolute position estimation error and corre-

lation coefficients (see Fig. 7c) illustrate the level of data 

similarity and statistically describe accuracy and reliability 

of the proposed measurement system. The median accuracy 

for the x and y axes were 0.75 and 0.25 cm, respectively, 

with Pearson correlation coefficients of Rx = 0.95 and 

Ry = 0.73.

4  Discussion

This section first provides a discussion of the implemented 

head detection algorithms. Following this, comments on the 

head displacement results are given. Afterwards, the system 

validation description and acquired accuracy values are 

presented. Finally, importance of the motor pattern param-

eters is emphasised and the study limitations are listed.

4.1  Head detection algorithms

Various combinations of head detection algorithms (see 

Table 1) were tested in order to determine the optimal 

set. Referential review of video recordings was conducted 

to acquire the number of actual head lifts performed that 

would make comparison possible.

Results (see Table 1, head lifts section) clearly indicate 

that head detection, by using only orientation data from 

Fig. 4  Box plot of head displacement data for all eight subjects, indi-

cating median values (red lines), the 25th and 75th data percentiles 

(blue box edges) and most extreme data points not considered outli-

ers (whiskers). Outliers are not plotted to avoid misinterpretation and 

incomprehensibility (colour figure online)

Fig. 5  Time series (upper 

figures) and corresponding 

histograms (lower figures) of 

head displacement for infant #1 

(right) and infant #4 (left)
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both IMUs, returns incorrect and usually unrealistically 

high number of head lifts. The high number of head lifts 

was noted because the infant managed to touch and move 

the mounted bracelet while moving its hands during the 

measurement session. False head detection is also the result 

of inappropriate fixation of IMUs inside the bracelet, which 

Fig. 6  Head coordinates in 

relation to time (right) and as a 

function of one another (left) for 

infant #5

a

b

c

Fig. 7  Validation results for the head coordinates, where a and b 

present the x and y head coordinates for OptoTrak (red lines) and the 

proposed sensory system (Mat and IMU—blue lines), while c pre-

sents the box plot of absolute errors for both axes. The red line repre-

sents the median value, blue box edges depict the 25th and 75th per-

centiles and the whiskers extend to the most extreme data points not 

considered outliers. Outliers (4.5 % of data for the x axis and 2.5 % 

of data for the y axis) are not presented to enhance interpretability of 

data and ensure clarity of the plot. Rx and Ry denote Pearson correla-

tion coefficients for x and y axes, respectively (colour figure online)
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resulted in an angle offset in the coronal (frontal) plane. 

Due to inaccurate angle information, hand imprints were 

detected and misinterpreted as the head.

These problems were resolved using online adaptive rota-

tion of the IMU quaternion, explained in the section Meth-

ods. Incorporation of IMU and pressure mattress sensory data 

fusion provided correct identification of trunk orientation and 

consequently successful head imprint detection (see Table 1, 

IMU and PCA). PCA alone could not be used for determina-

tion of head lifts. Since its output angle range is only 180°, 

preliminary approximate trunk orientation on the pressure 

mattress must be known and can either be predetermined 

or measured with an IMU. Another problem emerged when 

the infant tried to look in either the left or the right direction, 

consequently rolling its head around the trunk midline axis. 

This posed another issue for the computer model, as such 

rotations result in extensive excursions of the head imprint to 

the opposite direction and simultaneous increase of the head 

displacement distance. Without the use of the head-tracking 

algorithm, the line-of-sight algorithm failed to detect the head 

imprint. This occurred due to the increased head displace-

ment distance and again resulted in false detection of the head 

imprint and an incorrect number of head lifts.

Head-tracking algorithm therefore provides the com-

puter model with an additionally increased, yet accurate 

range of detection. Combination of algorithms, incorpo-

rating head tracking and sensory data fusion, proved to 

be completely accurate in comparison with the referential 

results (see Table 1). Out of almost 40 min of measured 

data, the computer model managed to correctly detect all 

six actual head lifts, which confirms its accuracy. Perfect 

matching of results is not only important in terms of accu-

rate detection of head lifts, but also indicates reliable, cor-

rect identification of the head imprint, while the head is in 

contact with the pressure mattress.

4.2  Head displacement from the trunk midline

The second part of Table 1, Figs. 4 and 5 focus on the 

head displacement data. Both figures in combination with 

statistical data provide a good description of data distribu-

tion, amplitude and other features of the analysed signal. 

Negative and positive values of head displacement indicate 

that infant displaced its head right or left of the trunk mid-

line, which happens when for example an infant rotates its 

head to look left or right. Maximum left and right values 

are calculated to identify and measure the full range of the 

head displacement data. These values can indicate poten-

tial limitations of head rotation and movement in relation to 

the trunk orientation. Median, mean and standard deviation 

values are calculated to identify asymmetries in the infant’s 

head–trunk posture, which are reported to be important for 

early diagnosis of autism [34].

Kurtosis is a measure of how outlier-prone a signal dis-

tribution is in relation to the normal distribution, while 

skewness describes asymmetry of data around the signal 

mean value. Both parameters were thus calculated to pro-

vide a good description of the signal distribution, as this 

can again indicate postural asymmetry. Root mean square 

displacement and approximate entropy were previously 

already reported in the analysis of infant’s COP patterns 

[11, 24] and verified as indicators of CP. Analysis of the 

head coordinates pattern by calculation of approximate 

entropy is thus also made possible by our computer model.

Statistical values for head displacement are fairly simi-

lar for all the measured infants, except for the first one. 

Video review confirmed that the mentioned infant held its 

head rotated towards the left throughout most of the ses-

sion. Visual presentation of data (see Figs. 4, 5) is very 

useful for easy interpretation and comparison among the 

measured infants and completely presents the data distribu-

tion. Figure 4 indicates that the first infant, while having 

asymmetrical head posture, has the widest range of head 

displacement. On the other hand, it indicates that most 

infants held their head quite still (value dispersion in the 

range of 10 cm) and mostly near the trunk midline. This is 

additionally verified by the detailed comparison of the head 

displacement time series and the histogram data for infant 

#1 and infant #4 (see Fig. 5). Again, it is evident that the 

infant #4 held its head near the trunk midline more often, 

as opposed to the infant #1, which had a wider range of 

motion and held its head asymmetrically. This verifies that 

our measurement system and the implemented computer 

model are capable of detecting and analysing various infant 

movement activities, including not only still behaviour but 

also head movements with wide head displacement range.

4.3  Validation of system accuracy

Besides the listed parameters, head coordinates analysis is 

also provided by the computer model. First, travelled dis-

tance of the head coordinates during each session was cal-

culated. These values were also normalised by considering 

the session duration to indicate the rate of head movement 

and the infant’s activity rate. The visual presentation for the 

fifth infant (see Fig. 6) again provides easier interpretation 

of activity in the vertical and the horizontal direction. The 

latter is more active, which is basically expected. Compari-

son of such graphs among several infants can demonstrate 

pattern differences and increased or decreased activity rate.

Accuracy validation results (see Fig. 7) present adequacy 

of the proposed sensory system for head position recognition 

and consequent head movement analysis. Comparison to 

Fig. 6 confirms adequacy of the performed head movements 

with prevailing movement of larger range in the medial–

lateral (x axis) direction (see Fig. 7a, b). Absolute error 
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values (median accuracy for the x and y axes were 0.75 and 

0.25 cm, respectively) reveal high precision of the head coor-

dinates determination. Both Pearson coefficients (Rx = 0.95 

and Ry = 0.73) indicate high level of determined signal cor-

relation (see Fig. 7c). Higher value for x axis is expected due 

to larger range of movement and distinct signal character.

4.4  Importance of the motor pattern parameters

Head movement analysis is especially important during the 

pre-reaching and the reach-to-grasp development period. 

Since these motor patterns and developmental milestones 

are closely related, the typical age group that the system 

is targeting is 1–7 months, when infants begin to progress 

towards these developmental milestones.

Finally, it is important to emphasise that although not all of 

the parameters were compared to the reference measurements, 

the comprehensive list of parameters is important for thor-

ough, complete description of infant motor patterns. Each of 

the listed descriptors provides its own insight into the charac-

teristics of infant head movement, focusing either on vertical 

movement in terms of head lifts or medial–lateral movement 

in terms of head displacement. Validation of position accuracy 

by using a referential optoelectronic measurement system is 

very important, since several parameters (head movement dis-

tance and head movement rate) are derived from position data. 

The numerous parameter results, which are extracted from 

the pressure mattress and IMU data, indeed ensure non-inva-

sive assessment of infant head movement, which is of major 

importance for analysis of child development.

4.5  Study limitations

A few limitations of our study should be highlighted: small 

sample size and relatively young age of infant subjects, 

small number of tracked head lifts, and a fairly low-sam-

pling rate for the pressure mattress data.

First of all, it should be noted that only eight infants were 

recruited for our measurement trials. Such a small sample 

size clearly limits the ability of performing advanced statis-

tical analysis on the acquired data. Such analysis should be 

performed on a larger pool of data, but this is not the goal 

of the paper. The main intention of our paper is to present a 

novel measurement system and sensory fusion method for 

non-invasive assessment of infant head movement. There-

fore, measurement data of eight infants should suffice for 

presentation of system functionality and the correspond-

ing validation. The recruited infants were aged from 1 to 

5 months, thus not covering the full age group range that 

the system is targeting. Infants from 5 to 7 months of age 

are usually more active and lift their heads more often. 

Head movement measurements for this age group could 

thus represent an important field of research, but taking into 

account the scope of our paper, this limitation should not 

affect our presentation of results.

The second limitation is that the infant subjects in the 

study generated rather small number of head lifts in total 

(only 6). This number does seem low for a validation study, 

as a higher number could additionally support the results. 

On the other hand, out of almost 40 min of data, our system 

manages to successfully track all the actual head lifts and cor-

rectly determines the head imprint position, while the head 

is on the pressure mattress. This verifies the correctness and 

high reliability of our system, implying that a higher number 

of performed head lifts should not affect the acquired results.

Finally, the sampling rate of 10 Hz for the pressure mat-

tress data does seem relatively low and limits the analy-

sis of movements with extremely short duration. Higher 

sampling frequency could perhaps provide a more exact 

description of head movement. On the other hand, infants 

usually do not perform head movements with duration 

shorter than 0.1 s; therefore this setting should not affect 

our study results much.

5  Conclusion

Presented results demonstrate correctness of our computer 

model and therefore verify suitability of the proposed 

sensory system for head movement analysis of infants in 

supine position. The proposed system is accurate, reliable, 

transportable, cost-effective and non-invasive, as proven 

by the statistical analyses and validation measurements. 

It avoids several weaknesses of other systems, proposed 

for similar measurements [25, 31], and exploits several 

already verified advantages of the proposed sensors [11, 20, 

35]. Sensory data fusion increases system reliability and 

improves accuracy of the used algorithms, as proven by the 

comparison with referential video recordings.

The proposed sensory system could be of interest to 

child therapists, paediatricians and other clinical staff, pro-

viding a powerful tool for quick, objective and non-invasive 

infant head movement assessment.
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