Univerza v Ljubljani

Fakulteta za elektrotehniko

Boštjan Malavašič

Enostebreno dvigalo za dvigovanje posod nad proizvodno linijo

Diplomsko delo visokošolskega strokovnega študija

Mentor: izr. prof. dr. Andrej Trost

Ljubljana, 2015
Zahvala

Zahvaljujem se mentorju, izr. prof. dr. Andreju Trostu, za pomoč in usmerjanje, pri nastajanju in oblikovanju diplomske naloge.

Zahvalil bi se tudi podjetju za zaupanje in dodelitev tega projekta, s katerim sem pridobil dragocene izkušnje.
Vsebina

1 Uvod 17

1.1 Funkcionalnost krmiljenja ... 19

2 Uporabljena oprema 23

2.1 Krmilnik ... 23
 2.1.1 Signalni moduli .. 24
 2.1.2 TIA Portal (Totally Integrated Automation Portal) 25
2.2 Frekvenčni pretvornik .. 28
2.3 Enkoder ... 31
2.4 Induktivna stikala .. 33
2.5 Končna - mejna stikala ... 35

3 Izvedba krmiljenja dvigala 36

3.1 Konfiguracija strojne opreme ... 36
3.2 Hitri števec (ang. HSC - High Speed Counter) 38
3.3 Programska koda .. 40
 3.3.1 Koračno programiranje ... 41
 3.3.2 Alarmi .. 43

4 Testiranje in zagon enostebrnega dvigala 45

5 Sklep 49

Literatura 51

A Seznam vhodno izhodnih signalov 54
B Seznam alarmov 56
Seznam slik

Slika 1.1: Upravljalna plošča

Slika 1.2: Prikaz rotacije dvigala nad zalogovnikom s prikazom pozicij senzorjev

Slika 1.3: Stranski prikaz enostebnega dvigala s pozicijami senzorjev

Slika 2.1: Krmilnik Siemens Simatic S7-1200

Slika 2.2: Uporabljena Siemensova signalna modula. SM 122 in SM 1223

Slika 2.3: Kreiranje novega bloka in izbira njegovega tipa

Slika 2.4: Prikaz delovnega okolja TIA Portal - "Project view"

Slika 2.5: Frekvenčni pretvornik Siemens SINAMICS G120C

Slika 2.6: Vezava frekvenčnega pretvornika

Slika 2.7: Prikaz frekvenčnega pretvornika in zaviralnega upora

Slika 2.8: Inkrementalni rotacijski enkoder Kübler

Slika 2.9: Princip delovanja optičnega inkrementalnega enkoderja

Slika 2.10: Izhod enkoderja, signala »A« in »B« in referenčn »Z«

Slika 2.11: Induktivni senzor bližine Telemecanique

Slika 2.12: Območje zaznavanja kovine induktivnega senzorja

Slika 2.13: Primeri vezav (NO in NC) tri in štiri žičnatih induktivnih senzorjev za NPN in PNP

Slika 2.14: Telo stikala Schneider electric, tip: ZCP21M12; glava stikala Schneider electric, tip: ZCE21; glava stikala Schneider electric, tip: ZCE02

Slika 3.1: Konfiguracija strojne opreme v TIA Portal V12

Slika 3.2: Določanje na katerem naslovu se bodo začeli vhodi in izhodi (»I address« in »Q address«)

Slika 3.3: Proženje pulzov pri uporabi hitrega števca
Seznam tabel

Tabela 1.1: Nastavitve parametrov frekvenčnega pretvornika za dvig in spust dvigala. ... 29
Tabela 2.2: Nastavitve parametrov frekvenčnega pretvornika za rotacijo dvigala. .. 31
Tabela A.1: Seznam vhodno izhodnih signalov..............................54
Tabela B.1: Seznam alarmov..56
Seznam uporabljenih simbolov

PLC - programabilni logični krmilnik (ang. *Programmable Logic Controller*)
SCL - tekstovni programski jezik (ang. *Structured Control Language*)
DIN - nemški inštitut za standardizacijo (nem. *Deutsches Institut für Normung*)
CPU - centralna procesna enota (ang. *Central processing unit*)
HSC - hitri števec (ang. *High Speed Counting*)
NO - normalno odprt kontakt (ang. *Normally Opend*)
NC - normalno zaprt kontakt (ang. *Normally Closed*)
AC - izmenična električna napetost (ang. *Alternatig Current*), (polariteta napetosti se s časom spreminja)
DC - enosmerna izmenična napetost (ang. *Direct Current*), (polariteta napetosti se s časom ne spreminja)
OB - organizacijski blok (ang. *Organization Block*)
FC - funkcija (ang. *Function*)
DB - podatkovni blok (ang. *Data Block*)
FB - funkcionalni blok (ang. *Function Block*)
Povzetek

Delovne pozicije dvigala so določene z vrednostjo na hitrem števcu enkoderja. Končne varnostne pozicije so detektirane z mehanskimi varovalnimi stikali, referenčne pozicije dvigala pa realizirane z induktivnimi senzorji. Za gibanje gor/dol in levo/desno se je uporabil enak pristop.

Uporabniku je omogočen enostaven priklop posode na dvigalo, katerega se upravlja preko upravljalne ročice. Upravljalna ročica se giblje v vse smeri, za vsako smer pa ima dve stopnji, ki predstavljata dve hitrosti gibanja dvigala. Na upravljalni plošči so nameščene signalne lučke za spremljanje in diagnostiko dvigala, stikalo za izbiro režima in ključ za vklop dvigala.

Ključne besede: dvigalo, enkoder, upravljalna ročica, frekvenčni pretvornik
Abstract

The thesis describes the complete process of realization of a one-pillar lift. The lift is designed to lift three different vessels over the production line. It has four regimes of movement to different positions. The lift has just one pillar, so rotation is enabled around its axis.

Working positions of the lift are determined by the value of the encoder counter. Final safety positions are detected by mechanical safety switches and reference positions by inductive sensors. Same approach is used for movement up/down as for left and right.

User can easily connect the vessel to the lift, whose movement is controlled with joystick. Joystick moves in all directions, each direction has two levels, which represents two-speed movement of lift. On control panel are installed signal lights for monitoring and diagnostics, switch for selecting the regime and the key to activate the lift.

Key words: lift, encoder, joystick, frequency converter
1 Uvod

Dvigalo je v osnovi naprava za vertikalni prevoz ljudi ali dvigovanje bremen. Dvigala ločimo po tipu (osebna ali tovorna) ter po vrsti pogona (električni ali hidravlični). Tovorna dvigala lahko razdelimo še na tovorne ploščadi, enostebna dvigala in večstebrna dvigala. V diplomski nalogi bom opisal enostebno tovorno dvigalo za dvigovanje posod nad proizvodno linijo.

Gibanje dvigala je počasno, zato je upravljalna plošča nameščena kar na samem stebru dvigala. Upravljalna plošča vsebuje:

- ključ za vklop in izklop dvigala,
- zaskočno tipko za zasilni izklop,
- zeleno lučko za signaliziranje delovanja dvigala,
- rdečo lučko za signaliziranje napake,
- tipko za potrditev napak,
- večpolno stikalo za izbiro režima delovanja,
- upravljalno ročico (joystick) za gibanje dvigala.

Slika 1.1: Upravljalna plošča.

Celotno upravljanje je realizirano na SIEMENS S7-1200 programabilnem logičnem krmilniku. Za uporabo vseh željenih signalov smo dodali dodaten vhodno/izhodni modul, celotno krmiljenje pa je zmontirano v elektro omari, ki se nahaja v inštalacijski etaži.
1.1 Funkcionalnost krmiljenja

Krmilni nivo skrbi za izvajanje operacij po operaterjevih zahtevah, prejetih preko signalov iz upravljalne ročice ter vrednosti enkoderjev in končnih stikal na dvigalu. Pogoj za upravljanje z dvigalom je, da ni prisotne napake (rdeča lučka je ugasnjena) ter da je dvigalo aktivirano s stikalom s ključem. Krmilje omogoča naslednje funkcije:

- dviganje do zgornje pozicije v osnovnem položaju,
- rotacijo do delovne pozicije,
- spuščanje do delovne pozicije v rotiranem položaju (samo režima 1 in 2),
- dviganje do zgornje pozicije v rotiranem položaju (samo režima 1 in 2),
- rotacijo v osnovni položaj in
- spuščanje do spodnje pozicije v osnovnem položaju.

Na upravljalni plošči lahko s preklopnikom izbiramo režim delovanja. Obstajajo štirje režimi:

- režim 1 za upravljanje s posodo 1,
- režim 2 za upravljanje s posodo 2,
- režim 3 za upravljanje s posodo 3 (zalogovnik 1) in
- režim 4 za upravljanje s posodo 3 (zalogovnik 2).
Slika 1.2: Prikaz rotacije dvigala nad zalogovnikom s prikazom pozicij senzorjev [1].

Posode 1, 2 in 3 so različnih velikosti. Katera posoda je nameščena na dvigalo izberemo s preklopnikom. Ko je na dvigalo nameščena posoda 3 lahko zanjo uporabimo režim 3 ali režim 4. Režim 3 pomeni, da je na dvigalo nameščena posoda 3 ter da želimo produkt dozirati na prvo dozirno mesto (zalogovnik 1), režim 4 pa pomeni, da želimo produkt dozirati na drugo dozirno mesto (zalogovnik 2). Preklop med režimi je možen le ko je dvigalo popolnoma spuščeno v osnovni poziciji.

Vsak režim ima svoje končne delovne pozicije. Končen dvig oz. spust je omejen z vrednostjo na enkoderju, za zaščito pa sta montirani še dve varnostni stikali. Za preklop med malo in veliko hitrostjo so fiksno določene vrednosti enkoderja. Dvigalo je opremljeno tudi z induktivnim stikalom, ki detektira njegovo preobremenjenost. V
primeru preobremenjenosti dvigala se aktivira alarm, če le-to ni zaratirano nad linijo, dovoljeno je le spuščanje bremena.

Dvigovanje bremena v osnovnem položaju je za vse štiri režime enako. Med seboj se razlikujejo le v višini pri kateri se bo dvigalo ustavilo. Osnovni pogoj za gibanje gor je, da je aktivno stikalo »Rotacija – osnovni položaj – stop«.

Gibanje dvigala gor poteka po naslednjem zaporedju:

1. Operater premakne upravljalno ročico v pozicijo za dviganje - dvigalo se dviga dokler ne doseže pozicije »Zgoraj – stop«. Operater lahko kontrolira hitrost s premikom ročice do polovice (mala hitrost) ali s premikom ročice do konca (visoka hitrost).
2. Ne glede na ročico se gibanje dvigala preklopi v gibanje z malo hitrostjo, ko doseže pozicijo »Zgoraj – mala hitrost«.

Če operater takoj zažene gibanje z visoko hitrostjo, se dvigalo najprej 2 sekundi dviga z malo hitrostjo, šele nato z visoko. Ostala gibanja, kot so rotiranje in spuščanje, se izvajajo po istem postopku.

Delovanje se signalizira z zeleno signalno lučko na upravljalni plošči, kar pomeni, da je gibanje aktivno v katerikoli smeri. Napake ali alarmi so signalizirani z rdečo lučko na upravljalni plošči - prižgana lučka opozarja na prisotno napako na dvigalu, utripajoča pa signalizira, da dvigalo vzpostavlja pogoje za delovanje (vzpostavitev frekvenčnih pretvornikov).
Slika 1.3: Stranski prikaz enostebnega dvigala s pozicijami senzorjev [1].
2 Uporabljena oprema

2.1 Krmilnik

Celotno upravljanje dvigala je realizirano na programabilnem logičnem krmilniku znamke SIEMENS. Uporabljena je serija S7-1200, ki se večinoma uporablja za manjše in preproste naloge avtomatizacije, zato se največkrat vgrajuje v samostojne naprave.

Slika 2.1: Krmilnik Siemens Simatic S7-1200 [2].

2.1.1 Signalni moduli

Slika 2.2: Uporabljena Siemensova signalna modula. SM 1221 (levo) [3] in SM 1223 (desno) [4].
Napajalni modul, CPU in oba signalna modula sta zmontirana na standardno DIN montažno letev. Vsi moduli so med seboj povezani z vgrajenimi vodili (ang. backplane bus) po katerih poteka komunikacija s CPU. Seznam vhodno izhodnih signalov se nahaja v dodatku A.

2.1.2 TIA Portal (Totally Integrated Automation Portal)

TIA portal je programsko orodje za razvoj celotne aplikacije. Omogoča programiranje krmilnikov, razvoj nadzornega sistema (vizualizacija procesa) in konfiguracijo različnih pogonov. TIA portal se od prejšnjih različic SIMATIC STEP 7 razlikuje predvsem po povsem drugačnem delovnem okolju. Značilno za TIA portal je, da lahko uporabnik v enem delovnem okolju dostopa do različnih naprav v celotnem projektu. Dostopa lahko do vseh konfiguriranih naprav v projektu enkrat. Programsko okolje omogoča:

- konfiguracijo, programiranje, testiranje in diagnostiko za vse SIMATIC krmilnike,
- popolno simbolno programiranje,
- programiranje v večih programskih jezikih (LAD, FBD, STL, SCL, Graph),
- velikost podatkovnih blokov do 16 MB,
- prenos aplikacije iz krmilnika v prazen projekt, z imeni signalov in komentarji ter
- simulacijo krmilnika in operacijskih panelov.

Struktura celotnega programa je prikazana na levi strani programskega okolja. Za kreiranje aplikacije so na voljo različni tipi blokov:

- Organizacijski blok – OB (ang. organization block) predstavlja vmesnik med operacijskim sistemom in uporabniškim programom. S konfiguracijo organizacijskih blokov lahko določimo kateri deli programa se bodo najprej izvedli in kateri del programa ima višjo prioriteto.
- Funkcijski blok – FB (ang. function block) vsebuje programsko kodo, podprograme in funkcije. Vsebina se izvede vsakič, ko funkcijski blok
pokliče drugi blok. Vsak funkcionalni blok ima dodeljen svoj podatkovni blok (DB).

- Funkcija – FC (ang. function) nima rezerviranega pomnilnika, kamor bi lahko shranila funkcijo parametre, zato je ob klicu funkcijo potrebno podati še te. Funkcije so uporabne za pogosto ponavljajoče kompleksne izračune.

Slika 2.3: Kreiranje novega bloka in izbira njegovega tipa.
Slika 2.4: Prikaz delovnega okolja TIA Portal - "Project view" [16].

1) Naslovna vrstica, kjer je prikazano ime projekta
2) Menijska vrstica vsebuje vse ukaze, ki se jih uporablja pri delu
3) Orodna vrstica ponuja hiter dostop do najpogosteje uporabljenih ukazov
4) Drevesna struktura projekta omogoča dostop do vseh komponent in podatkov v projektu, omogoča pa tudi dodajanje in spreminjanje konfiguracije naprav
5) Referenčni projekti
6) Podroben pregled prikazuje podrobnosti o izbranem objektu
7) Delovni prostor prikazuje vsebino objekta (npr. programsko kodo, pregled projekta...)
8) Delilnik okna
9) Informacijsko okno
10) Gumb za prehod na »Portal view«
11) Seznam odprtih oken
12) Statusna vrstica
13) Zavihki za dostopanje do katalogov naprav, funkcij, knjižnic
2.2 Frekvenčni pretvornik

Frekvenčni pretvornik se uporablja pri napravah, kjer je zahteva po spreminjanju hitrosti vrtljajev motorja. Hitrost vrtljajev pretvornik spreminja s spreminjanjem frekvence in amplitude napetosti. Za optimalno delovanje in zaščito motorja mora biti izbran ustrezen pretvornik, ki ga lahko s številnimi parametri popolnoma prilagodimo mnogim aplikacijam. Za enostavnejše aplikacije pa pretvornik deluje že z osnovnimi prilagoditvami. Pretvornik se med delovanjem greje, zato je potrebna pravilna montaža - reže za hlajenje ne smejo biti zaprte, zagotoviti je potrebno zadosten pretok zraka.

Slika 2.5: Frekvenčni pretvornik Siemens SINAMICS G120C [15].

V svojem projektu sem uporabil frekvenčni pretvornik znamke SIEMENS, model SINAMICS G120C. Moč frekvenčnega pretvornika sem izbral glede na zahteve naprave. Za dvig in spust je vgrajen frekvenčni pretvornik moči 1,1 kW. Enostebreno dvigalo uporablja dve preddefinirani hitrosti. Dotični frekvenčni pretvornik ponuja dvaindvajset različnih makrojev, ki nam poenostavijo njegovo konfiguracijo. Z izbranim makrojem izberemo preddefinirane nastavitve pretvornika, ki sponkam določijo potrebne vhodne in izhodne signale. Iz podatkovnega lista je razvidno, da zahteve za potrebe dvigala izpolnjuje makro 1, in tudi električno vezavo je potrebno prilagoditi kot kaže spodnja slika. [Slika 2.6].
Slika 2.6: Vezava frekvenčnega pretvornika. Uporabljene sponke so 5 in 6 za smer vrtenja in 16, 17 za hitrost vrtenja motorja. Uporabljena je tudi sponka 18 za zaznavanje napake pretvornika [6].

Ker se za gibanje dvigala uporablja dve hitrosti, ju je bilo potrebno nastaviti na željeni vrednosti. V podatkovnem listu najdemo, da ti vrednosti predstavljata parametrov P1003 in P1004, ki sta tovarniško nastavljena na 0. Prilagoditi je bilo potrebno tudi druge parametre, kot so čas za dosego hitrosti, maksimalni tok motorja ipd.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Opis</th>
<th>Velikost</th>
<th>Enota/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>p0010</td>
<td>Omogočanje sprememb parametrov</td>
<td>0→1</td>
<td>Dostop do parametrov</td>
</tr>
<tr>
<td>p0015</td>
<td>Makro vezave</td>
<td>1 (Macro 1)</td>
<td>Dve fiksne hitrosti</td>
</tr>
<tr>
<td>P1003</td>
<td>Hitrost 3</td>
<td>1500</td>
<td>Obr/min (visoka hitrost)</td>
</tr>
<tr>
<td>P1004</td>
<td>Hitrost 4</td>
<td>250</td>
<td>Obr/min (mala hitrost)</td>
</tr>
<tr>
<td>P1120</td>
<td>Čas za dosego hitrosti</td>
<td>2</td>
<td>Sekunde</td>
</tr>
<tr>
<td>P1121</td>
<td>Čas za zaustavitev</td>
<td>0,5</td>
<td>Sekunde</td>
</tr>
<tr>
<td>P1280</td>
<td>Omogočanje DC upora</td>
<td>1→0</td>
<td>Preklop iz DC zaviranja na upor</td>
</tr>
<tr>
<td>P0601</td>
<td>Senzor temperature motorja</td>
<td>0→1</td>
<td>PTC termistor</td>
</tr>
<tr>
<td>P0640</td>
<td>Maksimalen tok motorja</td>
<td>4A</td>
<td>Maksimalni tok motorja</td>
</tr>
<tr>
<td>P3900</td>
<td>Zaključek nastavitev</td>
<td>2</td>
<td>Potrditev zaključka vnosa osnovnih nastavitev (vnesti na koncu konfiguriranja)</td>
</tr>
</tbody>
</table>

Tabela 1.1: Nastavitve parametrov frekvenčnega pretvornika za dvig in spust dvigala.
Pri frekvenčnem pretvorniku za gibanje dvigala gor/dol je uporabljen tudi zaviralni upor. Dvigalo dviguje težka bremena, ki imajo zato veliko vztrajnost. Zaviralni upor nam omogoča, da lahko tudi bremena z veliko vztrajnostjo hipoma ustavimo. Uporabili smo zaviralni upor upornosti 370 Ohm, maksimalne moči 1500 W.

Slika 2.7: Prikaz frekvenčnega pretvornika in zaviralnega upora.

Za rotacijo enostebrnega dvigala je uporabljen frekvenčni pretvornik moči 0,55 kW, za njegovo vezavo in krmiljenje je uporabljen makro 1. Zaviralnega upora pri rotaciji ne potrebujemo, saj gre za počasno gibanje. Za ustrezno delovanje je bilo potrebno nastaviti sledeče parametre:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Opis</th>
<th>Velikost</th>
<th>Enota/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>p0010</td>
<td>Omogočanje sprememb parametrov</td>
<td>0→1</td>
<td>Dostop do parametrov</td>
</tr>
<tr>
<td>p0015</td>
<td>Makro vezave</td>
<td>1</td>
<td>Dve fiksnii hitrosti</td>
</tr>
<tr>
<td>P1003</td>
<td>Hitrost 3</td>
<td>1000</td>
<td>Obr/min (visoka hitrost)</td>
</tr>
<tr>
<td>P1004</td>
<td>Hitrost 4</td>
<td>250</td>
<td>Obr/min (mala hitrost)</td>
</tr>
<tr>
<td>P1120</td>
<td>Čas za dosega hitrosti</td>
<td>2</td>
<td>Sekunde</td>
</tr>
<tr>
<td>P1121</td>
<td>Čas za zaustavitev</td>
<td>1</td>
<td>Sekunde</td>
</tr>
<tr>
<td>P0601</td>
<td>Senzor temperature motorja</td>
<td>0→1</td>
<td>PTC termistor</td>
</tr>
<tr>
<td>P3900</td>
<td>Zaključek nastavitev</td>
<td>2</td>
<td>Potrditev zaključka vnosa osnovnih nastavitev (vnesti na koncu konfiguriranja)</td>
</tr>
</tbody>
</table>

Tabela 2.2: Nastavitve parametrov frekvenčnega pretvornika za rotacijo dvigala.

2.3 Enkoder

V primeru enostebrnega dvigala smo uporabili inkrementalni optični enkoder. Ker za dvigalo potrebujemo tudi informacijo o smeri gibanja, smo uporabili enkoder, ki na izhod pošilja dva signala. Signala A in B sta med seboj zamaknjena za 90 stopinj in omogočata določanje smeri gibanja. Večina enkoderjev ima vgrajen tudi referenčni signal, ki se proži enkrat na obrat osi in se lahko smatra kot začetni položaj enkoderja, s tem pridobimo bolj natančno gibanje. Za dvigalo take natančnosti nismo potrebovali, zato referenčnega signala nisem uporabil.

Slika 2.8: Inkrementalni rotacijski enkoder Kübler [7].

Slika 2.9: Princip delovanja optičnega inkrementalnega enkoderja. Na osi enkoderja je pritrjen disk z enakomerno razporejenimi režami. Skozi reže potuje svetloba do dveh ločenih tipal, ki generirata kanal A in B [8].
2.4 Induktivna stikala

Slika 2.11: Induktivni senzor bližine Telemecanique [9].
Obstajajo senzorji, ki imajo izhod normalno odprt (NO – normally open) in senzorji, ki imajo izhod normalno zaprt (NC – ang. normally closed). Ločimo jih tudi po načinu električne vezave, od uporabljenih dveh žic do štirih. Na dvigalu so nameščeni senzorji znamke Telemecanique, ki so normalno odprti, uporabljene so 3 žice in tip vezave PNP. Delujejo v območju od 12 V do 24 V enosmerne napetosti, vgrajeno imajo zaščito proti zamenjavi polaritete, njihov izhod pa sklene tokokrog že pri toku manjšem od 200 mA DC.

PNP vezava pomeni, da senzor pri preklopu sklene pozitivno napetost (+) z bremenom, ki je priključeno na negativno napetost (-). Tok v tem primeru teče iz naprave, na katero je senzor priklopljen, prek bremena proti negativni napetosti, kar imenujemo pozitivno preklapljanje (ang. current sourcing).
2.5 Končna - mejna stikala

Končna ali mejna stikala se prav tako uporabljajo za zaznavanje predmetov, le da tu ne gre za brezkontaktno zaznavanje, temveč mora predmet, ki ga želimo zaznavati, fizično premakniti pozicijo glave stikala za proženje signala. Pogosto se uporablja za zaznavanje odprtosti vrat, prisotnosti predmeta ali pravilne pozicije predmetov. Njihov izhod je povezan na rele, kontaktor ali PLC.

Na enostebrnem dvigu je zmontiranih sedem tovrstnih stikal. Montirani so na skrajno končnih pozicijah in preprečujejo, da bi gibanje dvigala poškodovalo osebje ali ostale naprave. Ob pravilnem delovanju dvigala se ta stikala nikoli ne prožijo.

Slika 2.14: Telo stikala Schnider electric, tip: ZCP21M12 (levo) [12]; glava stikala Schnider electric, tip: ZCE21 (na sredini) [13]; glava stikala Schnider electric, tip: ZCE02 (desno) [14].
3 Izvedba krmiljenja dvigala

3.1 Konfiguracija strojne opreme

3.1 Konfiguracija strojne opreme

Slika 3.2: Določanje na katerem naslovu se bodo začeli vhodi in izhodi (»I address« in »Q address«). Potrebno je nastavit za vsak modul posebej.
3.2 Hitri števec (ang. HSC - High Speed Counter)

Branje in osveževanje podatkov na krmilniku je počasnejše od proženja impulzov enkoderja. Če je frekvenca signala na vhodu krmilnika večja od frekvence branja podatkov, moramo uporabiti hitri števec, drugače lahko prihaja do napak pri štetju impulzov.

S7-1200 s procesorjem z oznako 1212C ima možnost uporabe štirih hitrih števecev. Vsi pripadajoči hitri števeci lahko brez napake zajemajo signale do frekvence 100 kHz. Za namene dviglia sem uporabil dva hitra števec, saj sta na dvigalu nameščena dva enkoderja. Konfiguracija hitrega števca je sledeča:

- omogočimo števec s kljukico v »Enable this high speed counter«,
- izberemo tip štetja na »Count« (imamo dva načina štetja, ali navadno štetje ali pa iz signalov razpoznavaje frekvence),
- način branja pulzov, izberemo »A/B counter 4x«.

Sistemska blok (SFB – CTRL_HSC) hitrega števca sem vključil v organizacijski blok (OB1 - Main), kjer sem vhodu hitrega števca priredil vse potrebne parametre:
- EN – omogoči vhode,
HSC – naslov hitrega števca, kot je definiran v strojni konfiguraciji,

DIR – DIR=1 pomeni, da je omogočeno spreminjanje smeri štetja,

CV – CV=1 pomeni, da je omogočena sprememba vrednosti števca,

NEW_DIR – nova vrednost smeri štetja, ko je DIR=1 (1 prištevanje; -1 odštevanje),

NEW_CV – nova vrednost števca, ko je CV=1.

Slika 3.4: Funkcijski blok hitrega števca, in pa spodaj, prepis vrednosti hitrega števca v podatkovni blok.

Vrednost števca, oz. v tem primeru vrednost enkoderja, se prepisuje v podatkovni blok, kjer je na voljo za uporabo v funkciji. Vrednost je lahko med -2147483648 in 2147483647, ki pa je v programu težko berljiva. Na podlagi testiranj in merjenj pozicije dvigala sem določil faktor, s katerim sem izračunal dejansko
pozicijo dvigala v milimetreih. Ta podatek pa sem nato uporabil v programu za pisanje pogojev.

Slika 3.5: Dobljeni faktor deljenja za preračun v merske enote in njegova uporaba.

3.3 Programska koda

Krmiljenje dvigala sem razdelil na dva dela - na gibanje dvigala in njegove alarme. Iz izkušenj sem se naučil, da v programski kodni ni primerno direktno naslavljanje vhodnih signalov, saj tekom življenjske dobe dvigala lahko pride do sprememb vhodnih točk. Že zaradi prevezave ene vhodne točke bi moral temeljito preveriti in popraviti celotno programsko kodo. Da bi se temu izognil, sem si najprej naredil spremenljivke, kamor zapisujem vhodne točke, te pa uporabljam v programskem kodni. Tako se izognem kasnejšim težavam pri vzdrževanju dvigala. Isti način sem uporabil tudi za določevanje delovnih pozicij dvigala. Za vsako delovno pozicijo sem uporabil svojo spremenljivko, kateri sem priredil vrednost hitrega števca oz. pozicijo dvigala. Ta način uporabe spremenljivk se je izkazal za zelo učinkovitega, saj so se tekom zagona delovne pozicije zelo spreminjale, popravke pa sem izvajal samo na tem delu programske kode.
Pisanje komentarjev se je izkazalo za zelo uporabno, saj to omogoča tudi drugim programerjem lažje in hitrejše razumevanje programske kode.

3.3.1 Koračno programiranje

Gibanje enostebrnega dvigala sem razdelil na korake, kot so počasno dvigovanje, hitro dvigovanje, rotacija, spust. Koračno programiranje omogoča, da pri zagonu ter tudi kasnejši uporabi lažje diagnosticiramo napako. Preverimo v katerem koraku je program in kateri pogoji so potrebni za nadaljevanje izvajanja. Koraki so cela števila, ki sem jih razdelil na sklope glede na gibanje:

- 0 – osnovna pozicija, mirovanje,
- med 100 in 200 - koraki za gibanje gor in dol v osnovni poziciji (nerotirani),
- med 200 in 300 - koraki obračanja enostebrnega dvigala okoli svoje osi,
- med 300 in 400 – koraki za gibanje gor in dol v rotirani poziciji (nad linijo).

Uporabil sem samo cela števila, zaokrožena na 10 (npr. 110, 120, 130) ter tako pustil možnost vrivanja korakov. Če bi se med dvigovanjem pokazala potreba, da dvigalo nek del poti potuje s počasno hitrostjo, bi med koraka 100 in 110 vrinil npr. korak 105 ter s tem ohranil red in preglednost na programsko kodo.

Slika 3.7: Primer koračnega programiranja. V vsakem koraku najprej izvedem ustrezne akcije, nižje pa definiram pogoje za prehod v naslednji korak.
3.3.2 Alarmi

Drugi del programske kode so alarmi. Alarmi so namenjeni opozarjanju operaterja na izjeme oziroma na anomalije v delovanju dvigala, njihov seznam se nahaja v dodatku B. Opozarjanje je izvedeno svetlobno, z rdečo signalno lučko na upravljalni plošči. Vsi alarmi so zbrani v svojem podatkovnem bloku (DB – ang. Data Block) in so tudi smiselno poimenovani. Prav tako vsi alarmi, z izjemo enega, onemogočijo gibanje dvigala ter tako preprečijo strojelom dvigala ali druge opreme. Ločil sem jih v dve skupini, v tiste, ki samo ustavijo gibanje in tiste, ki ob proženju hipoma izklopijo tudi krmilno napetost. Slednji se prožijo ob sprožitvi izklopa v sili ali če gibanje dvigala povozi končna varnostna stikala. Njihova vezava je »NC«, v normalni delovni poziciji mora biti izhod senzorja vedno na visokem nivoju (logična 1), saj se na ta način tudi prepričamo, da varnostni senzor dejansko tudi deluje. Visok nivo je zagotovilo, da med dolgoletnim delovanjem dvigala ni prišlo do okvare na žicah. Nizek nivo (logična 0) pa v tem primeru proži alarm. Izjema je alarm za preobremenitev dvigala, ki se aktivira le ob dviganju bremena v osnovni poziciji. Spuščanje dvigala je v tem primeru še vedno mogoče. Vsak alarm zahteva potrditev operaterja, ta pa ni možna dokler se napaka ne odpravi. Za potrjevanje napak je na upravljalni plošči nameščena tipka, ki tudi fizično preko kontaktorja sklene krmilno napetost.

Slika 3.8: Izsek programske kode za proženje alarmov.
4 Testiranje in zagon enostebrnega dvigala

Signali, ki jih dajejo senzorji ali sprejemajo aktuatorji, prehajajo v fizikalni obliki (večinoma v obliki električnih signalov) in lahko zaradi motenj iz omrežja ali zaradi slabo izvedene montaže električne opreme svojega cilja sploh ne dosežejo. Namen testiranja je potrditi ustreznost prenosa informacije med senzorjem in krmilnim nivojem. To se izvede z ustrezno simulacijo signala, pri tem pa se preverja identičnost med proženim in prejetim podatkom. Preverja se tudi skladnost izvedbe z elektro projektom.

Testiranje krmiljenja sem začel pri digitalnih vhodno/izhodnih signalih. Že predhodno sem si pripravil testno tabelo vseh signalov, za enostavno spremljanje pa sem vse signale vnesel v »TIA Portal watch table«, kjer sem spremljal proženje signala ali prepisoval vrednosti parametrov v podatkovne bloke. Za testiranje vhodno/izhodnih točk sem potreboval pomoč električarja, ki je prožil induktivna in končna stikala, jaz pa sem preverjal če sta stanje in lokacija proženega signala ustrezena. Pri tem testiranju so bile ugotovljene manjše napake pri vezavi senzorjev ali napačna fizična lokacija določenega senzorja na dvigalu, katere pa smo brez večjih težav hitro odpravili. Poleg digitalnih vhodnih točk sem moral preveriti delovanje obeh hitrih števecv, ki zaznavata proženje pulzov enkoderjev. Vrednost hitrega števca sem odčital pri polnem obsegu gibanja in hkrati pomeril spremembo v višini dvigala ter
tako dobil prve podatke za preračun vrednosti hitrega števca v merske enote. S temi vrednostmi sem že lahko okvirno določil delovne pozicije dvigala.

Po končanem testiranju vhodno/izhodnih točk sem začel testirati funkcionalno delovanje dvigala. Potrebno je bilo nastaviti parametre na frekvenčnem pretvorniku, brez katerih motor ne bi deloval. Večina vrednosti parametrov je vnaprej znana, razen hitrosti motorja in časa za dosego njegove končne hitrosti, kar pa je bilo potrebno nastaviti glede na dejansko gibanje in tudi želje uporabnika. Ker se dvigalo uporablja v farmaciji je konstrukcija izdelana iz nerjavečega jekla, ki je uporabljeno tudi za proženje induktivnih senzorjev. Zaradi slabih oziroma ničnih magnetnih lastnosti jekla je bilo detektiranje pozicije z induktivnimi senzorji nekoliko oteženo. Glede na predpisane lastnosti senzorja, da zaznava kovino že na bližini 4 mm, je bilo potrebno tu senzorje zelo približati kovini.

se giblje v željeni smeri, ker v začetnem času, dokler nima motor dovolj navora, teža bremena premaga moč motorja. V tem primeru sem moral uporabiti časovnik, ki je zakasnil izklop zavore na motorju. Tako sem po izdanem ukazu frekvenčnemu pretvorniku za start počakal pol sekunde in šele nato sprostil zavoro na motorju. Čas po katerem sprostim zavoro, oziroma po katerem ima motor dovolj navora, sem ocenil glede na več zaporednih testnih gibanj.

5 Sklep

Pri pisanju programske kode je skoraj nemogoče predvideti vse situacije do katerih prihaja na zagonu. Sam sem bil mnenja, da sem na zagon prišel dobro pripravljen, s programom, kateri je že skoraj dokončan, ampak sem hitro videl, da bo potrebnih veliko prilagoditev na realne razmere. Naknadno sem vključil več stavkov, npr. za zakasnjen izklop zavore, za določevanje referenčne vrednosti, časovnik za vzpostavitev delovnih pogojev po prisotni napaki in podobno.

Po nekajmesečnem obratovanju enostebrnega dvigala so že bile zahteve za izvedbo manjših sprememb na dvigalu. Uporabnik je želel spremeniti delovne pozicije dvigala, ker je prišlo do spremembe v opremi. Želja uporabnika je tudi nov (peti) režim obratovanja dvigala. Trenutno je na upravljalni plošči nameščeno preklopno stikalo s štirimi pozicijami, katerega bi bilo potrebno zamenjati s stikalom s petimi pozicijami.
Za to spremembo so potrebna elektroinštalacijska dela in testiranje digitalne vhodne točke. Temu bi se izognili, če bi namesto preklopnega stikala in signalizacijskih lučk uporabili operacijski panel. Tako bi podobne spremembe lahko izvedli samo na programskem delu dvigala. Kot dodatna uporabnost operacijskega panela bi bil opis proženega alarma in morebitni vzrok. Operacijski panel tako omogoča več interakcije med strojem in uporabnikom.

Slika 5.1: Primer operacijskega panela, ki bi lahko bil nameščen na enostebnem dvigalu.
Literatura

[16] TIA Portal V12, Help
Dodatek
A Seznam vhodno izhodnih signalov

<table>
<thead>
<tr>
<th>Št.</th>
<th>KRMILNIK</th>
<th>Naslov</th>
<th>Ime signala</th>
<th>Daljši opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 DI/DO/AI</td>
<td>D10.0</td>
<td>HSC_DVIG_SPUST_CH_A</td>
<td>Enkoder dvigovanja/spuščanja - pozicija dvigala - Kanal A</td>
</tr>
<tr>
<td>2</td>
<td>1 DI/DO/AI</td>
<td>D10.1</td>
<td>HSC_DVIG_SPUST_CH_B</td>
<td>Enkoder dvigovanja/spuščanja - pozicija dvigala - Kanal B</td>
</tr>
<tr>
<td>3</td>
<td>1 DI/DO/AI</td>
<td>D10.2</td>
<td>HSC_ROTACIJA_CH_A</td>
<td>Enkoder Rotacije - pozicija dvigala - Kanal A</td>
</tr>
<tr>
<td>4</td>
<td>1 DI/DO/AI</td>
<td>D10.3</td>
<td>HSC_ROTACIJA_CH_B</td>
<td>Enkoder Rotacije - pozicija dvigala - Kanal B</td>
</tr>
<tr>
<td>5</td>
<td>1 DI/DO/AI</td>
<td>D10.4</td>
<td>EMERGENCY_STOP</td>
<td>Izklop v sili aktiviran</td>
</tr>
<tr>
<td>6</td>
<td>1 DI/DO/AI</td>
<td>D10.5</td>
<td>FUSE_ERR</td>
<td>Ispad zaščitnih stikal</td>
</tr>
<tr>
<td>7</td>
<td>1 DI/DO/AI</td>
<td>D10.6</td>
<td>FC_UD_ERROR</td>
<td>Freqvenčni pretvornik gor/dol - napaka</td>
</tr>
<tr>
<td>8</td>
<td>1 DI/DO/AI</td>
<td>D10.7</td>
<td>FC_LR_ERROR</td>
<td>Freqvenčni pretvornik levo/desno - napaka</td>
</tr>
<tr>
<td>9</td>
<td>1 DI/DO/AI</td>
<td>D00.0</td>
<td>FC_UD_UP</td>
<td>Freqvenčni pretvornik gor/dol - Ukaz gor</td>
</tr>
<tr>
<td>10</td>
<td>1 DI/DO/AI</td>
<td>D00.1</td>
<td>FC_UD_DOWN</td>
<td>Freqvenčni pretvornik gor/dol - Ukaz dol</td>
</tr>
<tr>
<td>11</td>
<td>1 DI/DO/AI</td>
<td>D00.2</td>
<td>FC_UD_HIGH_SPEED</td>
<td>Freqvenčni pretvornik gor/dol - Visoka hitrost</td>
</tr>
<tr>
<td>12</td>
<td>1 DI/DO/AI</td>
<td>D00.3</td>
<td>FC_UD_LOW_SPEED</td>
<td>Freqvenčni pretvornik gor/dol - Mala hitrost</td>
</tr>
<tr>
<td>13</td>
<td>1 DI/DO/AI</td>
<td>D00.4</td>
<td>BRAKE_UD_OFF</td>
<td>Izklop zavore motorja gor/dol</td>
</tr>
<tr>
<td>14</td>
<td>1 DI/DO/AI</td>
<td>D00.5</td>
<td>FC_LR_FWD</td>
<td>Freqvenčni pretvornik levo/desno - Ukaz naprej</td>
</tr>
<tr>
<td>15</td>
<td>1 DI/DO/AI</td>
<td>AI1</td>
<td>Rezerva_AI_2</td>
<td>Rezerva AI 2</td>
</tr>
<tr>
<td>16</td>
<td>1 DI/DO/AI</td>
<td>AI2</td>
<td>Rezerva AI 1</td>
<td>Rezerva AI 1</td>
</tr>
<tr>
<td>1</td>
<td>2 DI</td>
<td>D11.0</td>
<td>BRAKE_UD_IS_OFF</td>
<td>Zavora izklopljena - motor gor/dol</td>
</tr>
<tr>
<td>2</td>
<td>2 DI</td>
<td>D11.1</td>
<td>BRAKE_LR_IS_OFF</td>
<td>Zavora izklopljena - motor levo/desno</td>
</tr>
<tr>
<td>3</td>
<td>2 DI</td>
<td>D11.2</td>
<td>ES_UPPER</td>
<td>Končno stikalo - breme zgoraj - varnostno stikalo</td>
</tr>
<tr>
<td>4</td>
<td>2 DI</td>
<td>D11.3</td>
<td>ES_LOWER</td>
<td>Končno stikalo - breme spodaj - varnostno stikalo</td>
</tr>
<tr>
<td>5</td>
<td>2 DI</td>
<td>D11.4</td>
<td>ES_BASIC</td>
<td>Končno stikalo - osnovna pozicija - varnostno stikalo</td>
</tr>
<tr>
<td>6</td>
<td>2 DI</td>
<td>D11.5</td>
<td>ES_TURNED_1</td>
<td>Končno stikalo - rotirana pozicija za posodo 1 - varnostno stikalo</td>
</tr>
<tr>
<td>7</td>
<td>2 DI</td>
<td>D11.6</td>
<td>ES_TURNED_3</td>
<td>Končno stikalo - breme zgoraj za posodo 3 - varnostno stikalo</td>
</tr>
<tr>
<td>8</td>
<td>2 DI</td>
<td>D11.7</td>
<td>ES_END_1</td>
<td>Končno stikalo - breme nad linijo za posodo 1 - varnostno stikalo</td>
</tr>
<tr>
<td>9</td>
<td>2 DI</td>
<td>D12.0</td>
<td>ES_END_2</td>
<td>Končno stikalo - breme nad linijo za posodo 2 - varnostno stikalo</td>
</tr>
<tr>
<td>10</td>
<td>2 DI</td>
<td>D12.1</td>
<td>IS_DOWN_STOP</td>
<td>Indukтивno stikalo - spodaj - referenca</td>
</tr>
<tr>
<td>11</td>
<td>2 DI</td>
<td>D12.2</td>
<td>IS_BASIC_STOP</td>
<td>Indukтивno stikalo - osnovna pozicija - referenca</td>
</tr>
<tr>
<td>12</td>
<td>2 DI</td>
<td>D12.3</td>
<td>OVERLOAD</td>
<td>Indukтивno stikalo - preobremenitev dvigala</td>
</tr>
<tr>
<td>13</td>
<td>2 DI</td>
<td>D12.4</td>
<td>BUTTON_UP_SLOW</td>
<td>Upravljalna plošča - Ročica dvigovanje počasi</td>
</tr>
<tr>
<td>14</td>
<td>2 DI</td>
<td>D12.5</td>
<td>BUTTON_UP_FAST</td>
<td>Upravljalna plošča - Ročica dvigovanje hitro</td>
</tr>
<tr>
<td>15</td>
<td>2 DI</td>
<td>D12.6</td>
<td>BUTTON_DOWN_SLOW</td>
<td>Upravljalna plošča - Ročica spuščanje počasi</td>
</tr>
<tr>
<td>16</td>
<td>2 DI</td>
<td>D12.7</td>
<td>BUTTON_DOWN_FAST</td>
<td>Upravljalna plošča - Ročica spuščanje hitro</td>
</tr>
<tr>
<td>1</td>
<td>3 DI/DO</td>
<td>D13.0</td>
<td>BUTTON_FWD_SLOW</td>
<td>Upravljalna plošča - Ročica rotiranje počasi</td>
</tr>
<tr>
<td>2</td>
<td>3 DI/DO</td>
<td>D13.1</td>
<td>BUTTON_FWD_FAST</td>
<td>Upravljalna plošča - Ročica rotiranje hitro</td>
</tr>
<tr>
<td>3</td>
<td>3 DI/DO</td>
<td>D13.2</td>
<td>BUTTON_RWD_SLOW</td>
<td>Upravljalna plošča - Ročica rotiranje nazaj počasi</td>
</tr>
<tr>
<td></td>
<td>3 DI/DO</td>
<td>DI3.3</td>
<td>BUTTON RWD FAST</td>
<td>Upravljalna plošča - Ročica rotiranje nazaj hitro</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>3 DI/DO</td>
<td>DI3.4</td>
<td>KEY ENABLE</td>
<td>Preklopnik s ključem - vklop dvigala</td>
</tr>
<tr>
<td>6</td>
<td>3 DI/DO</td>
<td>DI3.5</td>
<td>BUTTON_RESET</td>
<td>Tipka Potrditev napake</td>
</tr>
<tr>
<td>7</td>
<td>3 DI/DO</td>
<td>DI3.6</td>
<td>BUTTON_REGIME_1</td>
<td>Upravljalna plošča - pozicija gumba na izbiri režima 1</td>
</tr>
<tr>
<td>8</td>
<td>3 DI/DO</td>
<td>DI3.7</td>
<td>BUTTON_REGIME_2</td>
<td>Upravljalna plošča - pozicija gumba na izbiri režima 2</td>
</tr>
<tr>
<td>9</td>
<td>3 DI/DO</td>
<td>DI4.0</td>
<td>BUTTON_REGIME_3</td>
<td>Upravljalna plošča - pozicija gumba na izbiri režima 3</td>
</tr>
<tr>
<td>10</td>
<td>3 DI/DO</td>
<td>DI4.1</td>
<td>BUTTON_REGIME_4</td>
<td>Upravljalna plošča - pozicija gumba na izbiri režima 4</td>
</tr>
<tr>
<td>11</td>
<td>3 DI/DO</td>
<td>DI4.2</td>
<td>Rezerva DI 6</td>
<td>Rezerva DI 6</td>
</tr>
<tr>
<td>12</td>
<td>3 DI/DO</td>
<td>DI4.3</td>
<td>Rezerva DI 5</td>
<td>Rezerva DI 5</td>
</tr>
<tr>
<td>13</td>
<td>3 DI/DO</td>
<td>DI4.4</td>
<td>Rezerva_DI_4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3 DI/DO</td>
<td>DI4.5</td>
<td>Rezerva_DI_3</td>
<td>Rezerva_DI_3</td>
</tr>
<tr>
<td>15</td>
<td>3 DI/DO</td>
<td>DI4.6</td>
<td>Rezerva_DI_2</td>
<td>Rezerva_DI_2</td>
</tr>
<tr>
<td>16</td>
<td>3 DI/DO</td>
<td>DI4.7</td>
<td>Rezerva_DI_1</td>
<td>Rezerva_DI_1</td>
</tr>
<tr>
<td>17</td>
<td>3 DI/DO</td>
<td>DO1.0</td>
<td>FC_LR_BACK</td>
<td>Frekvenčni pretvornik levo/desno - Ukaz nazaj</td>
</tr>
<tr>
<td>18</td>
<td>3 DI/DO</td>
<td>DO1.1</td>
<td>FC_LR_HIGH_SPEED</td>
<td>Frekvenčni pretvornik levo/desno - Visoka hitrost</td>
</tr>
<tr>
<td>19</td>
<td>3 DI/DO</td>
<td>DO1.2</td>
<td>FC_LR_LOW_SPEED</td>
<td>Frekvenčni pretvornik levo/desno - Mala hitrost</td>
</tr>
<tr>
<td>20</td>
<td>3 DI/DO</td>
<td>DO1.3</td>
<td>BRAKE_LR_OFF</td>
<td>Izklop zavore motorja levo/desno</td>
</tr>
<tr>
<td>21</td>
<td>3 DI/DO</td>
<td>DO1.4</td>
<td>LIGHT_GREEN</td>
<td>Upravljalna plošča - Zelena lučka</td>
</tr>
<tr>
<td>22</td>
<td>3 DI/DO</td>
<td>DO1.5</td>
<td>LIGHT_RED</td>
<td>Upravljalna plošča - Rdeča lučka</td>
</tr>
<tr>
<td>23</td>
<td>3 DI/DO</td>
<td>DO1.6</td>
<td>LIGHT_YELLOW</td>
<td>Signalna svetilka - Rumena lučka</td>
</tr>
<tr>
<td>24</td>
<td>3 DI/DO</td>
<td>DO1.7</td>
<td>RESET_EMER</td>
<td>Reset izklopa v sili</td>
</tr>
<tr>
<td>25</td>
<td>3 DI/DO</td>
<td>DO2.0</td>
<td>Rezerva_DO 8</td>
<td>Rezerva_DO 8</td>
</tr>
<tr>
<td>26</td>
<td>3 DI/DO</td>
<td>DO2.1</td>
<td>Rezerva_DO 7</td>
<td>Rezerva_DO 7</td>
</tr>
<tr>
<td>27</td>
<td>3 DI/DO</td>
<td>DO2.2</td>
<td>Rezerva_DO 6</td>
<td>Rezerva_DO 6</td>
</tr>
<tr>
<td>28</td>
<td>3 DI/DO</td>
<td>DO2.3</td>
<td>Rezerva_DO 5</td>
<td>Rezerva_DO 5</td>
</tr>
<tr>
<td>29</td>
<td>3 DI/DO</td>
<td>DO2.4</td>
<td>Rezerva_DO 4</td>
<td>Rezerva_DO 4</td>
</tr>
<tr>
<td>30</td>
<td>3 DI/DO</td>
<td>DO2.5</td>
<td>Rezerva_DO 3</td>
<td>Rezerva_DO 3</td>
</tr>
<tr>
<td>31</td>
<td>3 DI/DO</td>
<td>DO2.6</td>
<td>Rezerva_DO 2</td>
<td>Rezerva_DO 2</td>
</tr>
<tr>
<td>32</td>
<td>3 DI/DO</td>
<td>DO2.7</td>
<td>Rezerva_DO 1</td>
<td>Rezerva_DO 1</td>
</tr>
</tbody>
</table>

Tabela A.1: Seznam vhodno izhodnih signalov
B Seznam alarmov

<table>
<thead>
<tr>
<th>Opis alarma</th>
<th>Pogoj za nastanek alarma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izklop v sili</td>
<td>EMERGENCY_STOP (I5) = 0</td>
</tr>
<tr>
<td>Izpad zaščitnih stikal</td>
<td>FUSE_ERR (I6) = 0</td>
</tr>
<tr>
<td>Napaka frekvenčnega pretvornika gor/dol</td>
<td>FC_UD_ERROR (I7) = 1</td>
</tr>
<tr>
<td>Napaka frekvenčnega pretvornika levo/desno</td>
<td>FC_LR_ERROR (I8) = 1</td>
</tr>
<tr>
<td>Varnostno stikalo zgoraj povoženo</td>
<td>ES_UPPER (I11) = 0</td>
</tr>
<tr>
<td>Varnostno stikalo spodaj povoženo</td>
<td>ES_LOWER (I12) = 0</td>
</tr>
<tr>
<td>Varnostno stikalo rotacije – osnovni položaj</td>
<td>ES_BASIC (I13) = 0</td>
</tr>
<tr>
<td>Varnostno stikalo rotacije – zarotirano za posodo 1</td>
<td>ES_TURNED_1 (I14) = 0 AND (BUTTON_REGIME_1 (I31) = 1 OR BUTTON_REGIME_2 (I32) = 1)</td>
</tr>
<tr>
<td>Varnostno stikalo rotacije – zarotirani položaj</td>
<td>ES_TURNED_3 (I15) = 0</td>
</tr>
<tr>
<td>Varnostno stikalo – breme nad linijo za posodo 1</td>
<td>ES_END_1 (I16) = 0 AND POZ_BASIC_STOP = 0</td>
</tr>
<tr>
<td>Varnostno stikalo – breme nad linijo za posodo 2</td>
<td>ES_END_2 (I17) = 0 AND POZ_BASIC_STOP = 0</td>
</tr>
<tr>
<td>Napaka enkoderja za dvig/spust</td>
<td>FC_UD_UP (Q1) OR FC_UD_DOWN (Q2) OR FC_UD_LOW_SPEED (Q4) OR FC_UD_HIGH_SPEED (Q3) AND NI SPREMEMB NA ENKODERJU 1 AND 5 sek potekel</td>
</tr>
<tr>
<td>Napaka enkoderja rotacije</td>
<td>FC_LR_FWD (Q6) OR FC_LR_BACK (Q7) OR FC_LR_LOW_SPEED (Q9) OR FC_LR_HIGH_SPEED (Q8) AND NI SPREMEMB NA ENKODERJU 2 AND 6 sek potekel</td>
</tr>
<tr>
<td>Zavora gor/dol se ne izklopi</td>
<td>BRAKE_UD_OFF (Q5) = 1 AND BRAKE_UD_IS_OFF (I9) = 0 AND Čas 5 sek potekel</td>
</tr>
<tr>
<td>Zavora levo/desno se ne izklopi</td>
<td>BRAKE_LR_OFF (Q10) = 1 AND BRAKE_LR_IS_OFF (I10) = 0 AND Čas 5 sek potekel</td>
</tr>
</tbody>
</table>

Tabela B.1: Seznam alarmov