Jure Jenko

Poraba električne energije za javno razsvetljavo v slovenskih občinah v letu 2014

Diplomsko delo visokošolskega strokovnega študija

Ljubljana, 2015
Zahvala

Zahvaljujem se svojemu mentorju doc. dr. Mateju B. Kobavu, univ.dipl.inž.el., ki mi je omogočil izdelavo diplomske naloge.

Hvala tudi moji družini in prijateljem, ki so mi stali ob strani v času dodiplomskega študija.
Seznam slik

Slika 1: Leto izdelave pridobljenih 35 načrtov razsvetljave ... 10
Slika 2: Prikaz porabe električne energije za JR na prebivalca v letu 2014 .. 21
Slika 3: : Poraba energije za JR na prebivalca v večjih občinah ... 21
Slika 4: : Graf odvisnosti porabe električne energije za JR na prebivalca od števila prebivalcev vseh analiziranih občin ... 22
Slika 5: : Graf odvisnosti porabe električne energije na prebivalca od števila prebivalcev v nemestnih analiziranih občin ... 23
Slika 6: Graf odvisnost porabe električne energije za JR na prebivalca od površine analiziranih občin ... 24
Slika 7: Razlika v porabi energije za JR na prebivalca v občini Bled v letih 2006 in 2014................. 26
Slika 8: Razlika v porabi energije za JR na prebivalca v občini Jesenice v letih 2006 in 2014 ..27
Slika 9: Razlika v porabi energije za JR na prebivalca v občini Vrhnika v letih 2006 in 2014 ...28
Slika 13: Razmerje občin, ki presegajo vrednost 44,5 kWh/preb... 35
Slika 14: Poraba električne energije za JR na svetilko ... 37
Slika 15: Poraba električne energije za JR na kilometer osvetljene ceste .. 41
Seznam tabel

Tabela 1: Tehnični podatki o svetilkah v občini Piran .. 12
Tabela 2: Število in delež svetilk v občini Piran, ki so oz. niso v skladu z Uredbo 12
Tabela 3: Podatki občine Piran, ki jih zahteva Uredbe .. 13
Tabela 4: Prikaz porabe električne energije za JR v slovenskih občinah v letu 2014 14
Tabela 5: Poraba električne energije za JR v letu 2014 za občine udeležene v analizo 18
Tabela 6: Prikaz porabe električne energije na prebivalca v letu 2014 .. 20
Tabela 7: Poraba električne energije za JR v občini Bled v letih 2008 in 2014 25
Tabela 8: Poraba električne energije za JR v občini Jesenice v letih 2006 in 2014 26
Tabela 9: Poraba električne energije za JR v občini Vrhnika v letih 2006 in 2014 27
Tabela 12: Število svetilk za JR v obravnavanih slovenskih občinah ... 36
Tabela 13: Povprečno število svetilk za JR na prebivalca občine .. 36
Tabela 14: Povprečna poraba el. energije za JR na svetilko .. 37
Tabela 15: Poraba energije za JR na km ceste ... 40
Tabela 16: Prikaz porabe električne energije za JR na m² javne površine 43
Tabela 17: Prikaz porabe električne energije za JR na m² razsvetljene fasade ali kulturnega spomenika ... 44
Povzetek

Zaradi škodljivih posledic delovanja svetlobnega onesnaževanja na okolje in človeka, je vlada Republike Slovenije leta 2007 sprejela Uredbo o mejnih vrednostih svetlobnega onesnaževanja okolja. Uredba zajema vse ključne probleme svetlobnega onesnaževanja okolja, vendar so zaradi hitrega sprejetja in nesodelovanja stroke pri njenem nastanku nekatere stvari v praksi neuporabne.

Ključne besede

Uredba o mejnih vrednostih svetlobnega onesnaževanja okolja, poraba električne energije, javna razsvetljava, občine.
Abstract

Due to the harmful effects of lighting pollution on environment and humans, the Government of Republic of Slovenia in 2007 accepted the Decree on limit values due to light pollution. The Decree covers all the key problems of light pollution, but due to rapid acceptance and non cooperation of profession some things are useless in practice.

The project presents an overview of electrical energy consumption of public lighting in Slovenian municipalities in 2014. Data ware acquired personally, from each municipality and from lighting designs, which are required by the 21. article of the Decree on limit values due to light pollution. Using data of energy consumption of public lighting the comparison of energy consumption, per resident, per kilometre of lighted road, per area of lighted public surface, per lighted facade or cultural monument and energy consumption on street lamp was made. Data analysis showed that the energy consumption in majority of Slovenian municipalities is reducing from year to year, as a result of the Decree on limit values due to light pollution.

Key words:
Decree on limit values due to light pollution, electrical energy consumption, public lighting, municipalities
Seznam uporabljenih kratic in simbolov

<table>
<thead>
<tr>
<th>Kratica</th>
<th>Pomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Republika Slovenija</td>
</tr>
<tr>
<td>JR</td>
<td>Javna razsvetljava</td>
</tr>
<tr>
<td>SODO</td>
<td>Sistemska operator distribucije omrežja z električno energijo</td>
</tr>
</tbody>
</table>
1 Uvod

Javna razsvetljava je razmeroma majhen del celotne porabe električne energije v državi, saj njen delež znaša okoli 0,7 odstotka [1]. Vendar pa je varčevanje z energijo pri javni razsvetljadi kljub temu pomembno za občine, saj je energija za JR pogosto največji delež električne energije, ki jo plačujejo občine.

Podatke o porabi električne energije za javno razsvetljava v občinah sem pridobil preko poslanih elektronskih sporočil pristojnim uslužbencem v občinah. Odziv ni bil tako velik kot sem pričakoval. Naknadno sem po telefonu govoril še z ostalimi občinami od katerih sprva nisem dobil odgovora. Za podatke sem zaprosil tudi distribucijska podjetja, ki dobavljajo električno energijo občinam. Podatke o številu svetilk, skupni moči svetilk, dolžini in površini osvetljenih cest in drugih javnih površin, površini fasade ali kulturnega spomenika in oglasne površine sem pridobil s pomočjo načrta razsvetljava, ki ga predpisuje Uredba o mejnih vrednostih svetlobnega onesnaženja okolja.
2 Uredba o mejnih vrednostih svetlobnega onesnaževanja okolja

2.1 Predstavitev Uredbe

Svetlobno onesnaženje okolja je emisija svetlobe, ki poveča naravno osvetljenost okolja in povzroča za človekov vid motečo osvetljenost in občutek bleščanja. Zaradi tega ogroža varnost v prometu, zaradi neposrednega in posrednega sevanja proti nebu moti življenje ali selitev ptic, netopirjev, žuželk in drugih živali, ogroža naravno ravnotežje na varovanih območjih, moti profesionalno ali amatersko astronomsko opazovanje ali s sevanjem proti nebu po nepotrebnom porabljanju električno energijo. Uredba o mejnih vrednostih svetlobnega onesnaževanja je namenjena varstvu narave, bivalnih prostorov, ljudi in astronomskih opazovanj ter ne nazadnje tudi varčevanju z električno energijo.

Slovenija je ena redkih držav, ki že leta 2007 resno pristopila k reševanju problematike svetlobnega onesnaževanja. Upravitelji javne razsvetljave imajo z Uredbo določen način osvetljevanja in najvišjo vrednost porabe elektrike, ki jo smejo porabiti za osvetljevanje. Prepovedana je tudi razsvetljava v dnevnem času (od jutra do večera). Odločitev o tem, katere ceste bodo osvetljene pa je prepuščena upravljavcem oz. jo urejajo predpisi s področja prometne varnosti. Osvetljevanje nočnega okolja spreminja normalne vedenjske vzorce številnih živali. Pri sprejeti Uredbi je več kot očitno, da pri njej niso sodelovali strokovnjaki s področja razsvetljevje in svetlobne tehnike ampak le astronomi in biologi.

V zvezi z Uredbo se pojavlja mnogo vprašanj, saj so nekateri kriteriji nesmiselni. Eden izmed nesmislov je zamenjava svetilk, ki so bile nameščene v letih pred sprejemom Uredbe. Njihova življenjska doba je vsaj 25 let [4].
Uredba

Glede na to, da so v svetilkah za zunanjo razsvetljavo v večjem delu sijalke s katerimi je potrebno ravnati v skladu s predpisi (obvezno zbiranje in reciklāža), je bil strošek za ustrezno odstranitev še toliko večji. Spremno besedilo pravi, da je Uredba naravnana ekološko in da bo poraba električne energije manjša. Kaj pa energija za proizvodnjo svetilk, ki so bile zavržene pred iztekom življenjske dobe? Za celotno predvideno investicijo je bilo potrebno zamenjati 80-90 odstotkov vseh svetilk, kar se lahko pretvori v tone ogljikovega dioksida, ki so bile spuščene v zrak pri proizvodnji novih svetilk [4]. Prav tako ne smemo zanemariti energije, ki je bila porabljena za zamenjavo in ustrezno uničenje obstoječih svetlobnih virov in svetilk.

Poraba energije na prebivalca je zgolj statističen podatek. Tako imajo gosteje poseljene občine prednost pred ostalimi. Podatek o porabi na prebivalca nima fizikalne osnove za primerjavo učinkovitosti naprav za razsvetljavo. Letna poraba energije na prebivalca občine ni realno merilo, ki bi odražalo dejansko stanje razsvetljave. Lahko pa se v Uredbi ohrani kot primerjalno merilo za doseganje stanja razsvetljave. Za oceno energijske učinkovitosti razsvetljave je potrebno uporabiti merila, ki so v fizikalnem smislu povezana z merjeno veličino. Ker osvetljujemo prometne površine, bi bilo smiselno upoštevati namesto na prebivalca, porabo na kvadraturo javnih (osvetljenih) površin. Tako merilo bi bilo bolj pravično za podeželske občine, saj so sedaj zaradi redkejše poseljenosti v primerjavi z mestnimi občinami v slabšem položaju.

Nesmiseln je tudi 4. člen Uredbe v katerem je zapisana zahteva, da se za razsvetljavo lahko uporabljajo le svetilke, katerih delež svetlobnega toka, ki seva navzgor je enak 0 odstotkov. Nerazumljivost se nanaša zlasti na dejstvo, da je vrednost 0 odstotkov predpisana brez decimalnih enot ali stopnje natančnosti, s katero mora biti ta vrednost ugotovljena oz. izmerjena.

Pojem deleža svetlobnega toka, ki seva navzgor, je definiran v 11. točki 3. člena Uredbe. Delež svetlobnega toka, ki seva navzgor, je razmerje med svetlobnim tokom, ki seva v smeri nad vodoravnico in svetlobnim tokom, ki seva iz svetilke v tej svetilki izraženo v odstotkih. Delež svetlobnega toka se določi na podlagi podatkov proizvajalca svetilka pridobljenih s tipskim preizkušanjem. Zaradi izredne natančnosti fotometričnih instrumentov in različnih neizogibnih motenj, ki spremljajo posamezne meritve, izmerjene vrednosti svetlobnega toka v smeri nad vodoravnico nikoli ne dosegajo absolutne ničle.

4
Natančnost podatka o deležu svetlobnega toka, ki seva navzgor kot ga navaja proizvajalec je zato odvisna tudi od natančnosti instrumenta in načina interpretacije opravljenih meritev.

Prav vsi, ki se ukvarjajo z razsvetljanje so strinjajo, da je Uredba potrebna. Uredba je spremenila pogled na razsvetljanje, prav tako so posledice uredbe pozitivne. Vendar pa na žalost Uredba, ki je bila sprejeta zelo na hitro ne koristi nikomur drugemu razen astronomom in biologom. Zavedati se moramo, da je v Sloveniji malo profesionalnih in veliko število amaterskih astronomov. Pri nastajanju uredbe stroka ni sodelovala, zato so nekatere stvari v praksi pomanjkljive.

2.2 Povzetek pomembnejših členov Uredbe

4. člen
(osvetljevanje z okolju prijaznimi svetilkami)

(1) Za razsvetljanje, ki je vir svetlobe po tej uredbi, se uporabljajo svetilke, katerih delež svetlobnega toka, ki seva navzgor, je enak 0%.

(2) Ne glede na določbe prejšnjega odstavka se za razsvetljanje javnih površin ulic na območju kulturnega spomenika lahko uporabljajo svetilke, katerih delež svetlobnega toka, ki seva navzgor, ne presega 5%, če:
- je električna moč posamezne svetilke manjša od 20 W,
- povprečna osvetljenost javnih površin, ki jih osvetljuje razsvetljava s takimi svetilkami, ne presega 2 lx, in
- je javna površina ulic, ki jo osvetljuje razsvetljava, namenjena pešcem, kolesarjem ali počasnemu prometu vozil s hitrostjo, ki ne presega 30 km/h.

(3) Ne glede na določbe prvega odstavka tega člena ni omejitev glede deleža svetlobnega toka, ki seva navzgor, za svetilke, ki so sestavni del kulturnega spomenika, če je električna moč posamezne svetilke manjša od 20 W.
5. člen
(ciljne vrednosti za razsvetljava cest in javnih površin)

(1) Letna poraba elektrike vseh svetilk, ki so na območju posamezne občine vgrajene v razsvetljava občinskih cest in razsvetljava javnih površin, ki jih občina upravlja, izračunana na prebivalca s stalnim ali začasnim prebivališčem v tej občini, ne sme presegati ciljne vrednosti 44,5 kWh.

(2) Ne glede na ciljno vrednost letne porabe elektrike iz prejšnjega odstavka je lahko največja letna poraba elektrike vseh svetilk, ki so na območju občine z manj kakor 1.000 prebivalcev vgrajene v razsvetljava občinskih cest in razsvetljava javnih površin, enaka 44,5 MWh.

(3) Letna poraba elektrike vseh svetilk, ki so na območju Republike Slovenije vgrajene v razsvetljava državnih cest, izračunana na prebivalca Republike Slovenije, ne sme presegati ciljne vrednosti 5,5 kWh.

(4) Izpolnjevanje zahtev v zvezi z doseganjem ciljne vrednosti letne porabe elektrike svetilk, vgrajenih v razsvetljava občinskih cest in javnih površin, ki jih upravlja občina, in izpolnjevanje zahtev v zvezi z doseganjem ciljne vrednosti letne porabe elektrike svetilk, vgrajenih v razsvetljava državnih cest, se ugotavlja v postopku celovite presoje vplivov na okolje programov in prostorskih načrtov, ki posredno ali neposredno vplivajo na letno porabo elektrike pri obratovanju razsvetljava cest ali razsvetljava javnih površin.

18. člen
(načrtovanje, gradnja in obnova razsvetljava)

Pri načrtovanju, gradnji ali obnovi razsvetljava je treba izbrati tehnične rešitve in upoštevati doganjana in rešitve, ki zagotavljajo, da:
- svetilke, vgrajene v razsvetljava, ne povzročajo preseganja mejnih vrednosti, določenih s to uredbo, in
- svetilke razsvetljava izpolnjujejo zahteve iz 4. člena te uredbe, razen če je za svetilke posamezne vrste razsvetljava s to uredbo določeno drugače.
21. člen
(načrt razsvetljave)

(1) Upravljavec vira svetlobe, pri katerem vsota električne moči svetilk presega 10 kW, ali 1 kW, če gre za razsvetljavo kulturnega spomenika, fasade ali objekta za oglaševanje, mora imeti izdelan načrt razsvetljave, iz katerega so razvidni osnovni podatki o viru svetlobe.

(2) Če upravljavec upravlja z več viri svetlobe iz prejšnjega odstavka, ima lahko zanje izdelan skupni načrt razsvetljave.

(3) Upravljavec mora načrt razsvetljave iz prejšnjih odstavkov preveriti vsako peto leto po začetku obratovanja razsvetljave in ga po potrebi spremeniti ali dopolniti.

(4) Ne glede na določbo prejšnjega odstavka mora upravljavec izdelati nov načrt razsvetljave, če razsvetljavo obnovi tako, da se poveča električna moč svetilk za več kot 15% ali gre za zamenjavo več kot 30% njenih svetilk.

(5) Načrt razsvetljave vsebuje podatke o upravljavcu razsvetljave in viru svetlobe, ki je predmet načrta, in sicer zlasti:
- ime in naslov oziroma firmo in sedež upravljavca,
- opredelitev vira svetlobe v skladu s 4. točko prvega odstavka 3. člena te uredbe,
- kraj razsvetljave in podrobnjejša lokacija vira svetlobe,
- letna poraba električne energije, skupna električna moč in število nameščenih svetilk ter delež svetlobnega toka, ki ga sevajo navzgor,
- celotna dolžina in površina osvetljenih cest in drugih javnih površin, če gre za razsvetljavo cest ali javnih površin,
- zazidana površina stavbe in nepokrite površine gradbenih inženirskih objektov, če gre za razsvetljavo letališča, pristanišč, železnice, proizvodnega objekta, poslovne stavbe, ustanove ali športnega igrišča,
- površina fasade ali kulturnega spomenika, če gre za razsvetljavo fasade oziroma kulturnega spomenika, ali
- oglasna površina in električna moč vseh notranjih svetilk, če gre za razsvetljavo oglasnega objekta.
(6) Kadar gre za razsvetljavo, katere vsota električne moči svetilk presega 50 kW, ali 20 kW, če gre za razsvetljavo kulturnega spomenika, fasade ali objekta za oglaševanje, mora načrt razsvetljave iz prejšnjega odstavka vsebovati tudi podatke o svetlobnem onesnaževanju, in sicer o:
- osvetljenosti na oknih varovanih prostorov, ki jo povzroča vir svetlobe, in
- svetlost površin, ki jo povzroča razsvetljava kulturnega spomenika ali fasade.

(7) Določba prejšnjega odstavka ne velja za razsvetljavo cest in javnih površin.

(8) Upravljavec razsvetljave iz šestega odstavka tega člena mora svoj načrt razsvetljave najpozneje tri mesece po začetku obratovanja razsvetljave ali po njeni obnovi objaviti na svoji spletni strani ali na drug primeren način, tako da je dostopen javnosti.

(9) Načrt razsvetljave občinskih cest in javnih površin mora na način iz prejšnjega odstavka objaviti tudi občina.

(10) Upravljavec razsvetljave je dolžan načrt razsvetljave na zahtevo posredovati ministrstvu, pristojnemu za varstvo okolja, ali inšpektorju, pristojnemu za varstvo okolja.

26. člen
(prekrški)

(1) Z globo od 4.000 do 10.000 eurov se za prekršek kaznuje upravljavec razsvetljave, ki je pravna oseba ali samostojni podjetnik posameznik, če kot upravljavec razsvetljave:
- uporablja svetilke, ki ne izpolnjujejo zahtev iz 4. člena te uredbe, razen če je za posamezno vrsto razsvetljave s to uredbo drugače določeno,
- ne objavi načrta razsvetljave na svoji spletni strani ali na drug primeren način v skladu z osmim odstavkom 21. člena te uredbe,
- ne posreduje načrta razsvetljave ministrstvu, pristojnemu za varstvo okolja, ali inšpektorju, pristojnemu za varstvo okolja, na njegovo zahtevo v skladu z desetim odstavkom 21. člena te uredbe,
- ne prilagodi obstoječe razsvetljave določbam te uredbe v rokih iz 28. člena te uredbe
- .
Načrt razsvetljave

3 Načrt razsvetljave

Podana morata biti kraj razsvetljave in podrobnejša lokacija vira svetlobe. Načrt mora vsebovati podatke o letni porabi elektrine energije, skupni električni moči in števili nameščenih svetilk ter delež svetlobnega toka, ki ga sevajo navzgor, celotni dolžini in površini osvetljenih cest in drugih javnih površin, če gre za razsvetljavo cest ali javnih površin.

Predmet načrta morajo biti podatki o zazidani površini stavbe in nepokrite površine gradbenih objektov, če gre za razsvetljavo fasade ali kulturnega spomenika, če gre za razsvetljavo fasade oziroma kulturnega spomenika, podatki o razsvetljeni površini oglasne površine in električna moč vseh notranjih svetilk, če gre za razsvetljavo oglasnega objekta. Kadar gre za razsvetljavo, katere vsota električne moči presega 50 kW, ali 20 kW, če gre za razsvetljavo kulturnega spomenika, fasade ali objekta za oglaševanje, mora načrt razsvetljave vsebovati tudi podatke o svetlobnem onesnaževanju in sicer o osvetljenosti na oknih varovanih prostorov, ki jo povzroča vir svetlobe.

Upravljavec razsvetljave mora svoj načrt razsvetljave najpozneje tri mesece po začetku obratovanja razsvetljave ali po njeni obnovi objaviti na svoji spletni strani ali na drug primeren način, tako, da je dostopen javnosti. Upravljavec razsvetljave je dolžan načrt razsvetljave na zahtevo posredovati ministrstvu pristojnemu za varstvo okolja in inšpektorju, pristojnemu za varstvo okolja.

Prav tako se upravljavca razsvetljave kaznuje, če ne posreduje načrta razsvetljave ministrstvu, pristojnemu za varstvo okolja ali inšpektorju, pristojnemu za varstvo okolja na njegovo zahtevo v skladu z desetim odstavkom 21. člena Uredbe.

Slika 1: Leto izdelave pridobljenih 35 načrtov razsvetljave
3.1 Primer dobrega načrta razsvetljave

Načrt razsvetlave

Tabela 1: Tehnični podatki o svetilkah v občini Piran

<table>
<thead>
<tr>
<th>Svetilke</th>
<th>Poraba električne energije [MWh/letno]</th>
<th>Moč [kW]</th>
<th>Število svetilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svetilke na NT drogovih</td>
<td>913,1</td>
<td>228,3</td>
<td>2.569</td>
</tr>
<tr>
<td>Svetilke na VT drogovih</td>
<td>686,5</td>
<td>171,6</td>
<td>925</td>
</tr>
<tr>
<td>Reflektorske svetilke</td>
<td>5,2</td>
<td>5,2</td>
<td>16</td>
</tr>
<tr>
<td>Skupaj</td>
<td>1.604,8</td>
<td>405,1</td>
<td>3.510</td>
</tr>
</tbody>
</table>

Tabela 2: Število in delež svetilk v občini Piran, ki so oz. niso v skladu z Uredbo

<table>
<thead>
<tr>
<th>Svetilke</th>
<th>Število svetilk</th>
<th>Delež svetilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svetilke, ki so v skladu z Uredbo</td>
<td>233</td>
<td>6,6%</td>
</tr>
<tr>
<td>Svetilke, k niso v skladu z Uredbo</td>
<td>3277</td>
<td>93,4%</td>
</tr>
</tbody>
</table>

12
Načrt razsvetljava

<table>
<thead>
<tr>
<th>Dolžina osvetljenih cest</th>
<th>40,5 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osvetljene nepokrite javne površine</td>
<td>10.596 m²</td>
</tr>
<tr>
<td>Razsvetljava ustanov</td>
<td>410 m²</td>
</tr>
<tr>
<td>Razsvetljava kulturnih spomenikov</td>
<td>6.871 m²</td>
</tr>
<tr>
<td>Razsvetljava objektov za oglaševanje</td>
<td>52 m²</td>
</tr>
</tbody>
</table>

Tabela 3: Podatki občine Piran, ki jih zahteva Uredbe

Zgoraj opisani načrt razsvetljave občine Piran je eden izmed bolj izdelanih načrtov. Načrt razsvetljave je lahko vzgled ostalim občinam, ki nimajo oziroma imajo pomanjkljivo izdelan svoj načrt razsvetljave. Občine, ki načrta razsvetljave nimajo izdelanega, ga bodo morale čim prej izdelati, saj v nasprotnem primeru kršijo zakon.
Poraba električne energije za javno razsvetljavo v slovenskih občinah v letu 2014

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba električne energije [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>37.401.551</td>
</tr>
<tr>
<td>Druge</td>
<td>30.181.417</td>
</tr>
<tr>
<td>Skupaj</td>
<td>67.582.968</td>
</tr>
</tbody>
</table>

Tabela 4: Prikaz porabe električne energije za JR v slovenskih občinah v letu 2014
Poraba električne energije

<table>
<thead>
<tr>
<th>Občina</th>
<th>Število prebivalcev v letu 2014</th>
<th>Poraba električne energije za leto 2014 [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/prebivalca]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beltinci</td>
<td>8329</td>
<td>310.000</td>
<td>37,2</td>
</tr>
<tr>
<td>Bled</td>
<td>8145</td>
<td>332.888</td>
<td>40,8</td>
</tr>
<tr>
<td>Bohinj</td>
<td>5176</td>
<td>223.518</td>
<td>43,2</td>
</tr>
<tr>
<td>Brda</td>
<td>5705</td>
<td>50.300</td>
<td>8,8</td>
</tr>
<tr>
<td>Brežice</td>
<td>24230</td>
<td>1.639.259</td>
<td>67,7</td>
</tr>
<tr>
<td>Celje</td>
<td>48883</td>
<td>2.843.119</td>
<td>58,2</td>
</tr>
<tr>
<td>Cerklje na Gorenjskem</td>
<td>7356</td>
<td>164.700</td>
<td>22,4</td>
</tr>
<tr>
<td>Cirkulane</td>
<td>2336</td>
<td>46.223</td>
<td>19,8</td>
</tr>
<tr>
<td>Destrnik</td>
<td>2580</td>
<td>155.346</td>
<td>60,2</td>
</tr>
<tr>
<td>Dobrepolje</td>
<td>3934</td>
<td>82.000</td>
<td>20,8</td>
</tr>
<tr>
<td>Dolenjske Toplice</td>
<td>3398</td>
<td>62.653</td>
<td>18,4</td>
</tr>
<tr>
<td>Domžale</td>
<td>34949</td>
<td>1.200.500</td>
<td>34,4</td>
</tr>
<tr>
<td>Dravograd</td>
<td>8888</td>
<td>272.440</td>
<td>30,7</td>
</tr>
<tr>
<td>Gorje</td>
<td>2840</td>
<td>94.155</td>
<td>33,2</td>
</tr>
<tr>
<td>Gornji Grad</td>
<td>2605</td>
<td>109.124</td>
<td>41,9</td>
</tr>
<tr>
<td>Horjul</td>
<td>2952</td>
<td>137.382</td>
<td>46,5</td>
</tr>
<tr>
<td>Hrpelje-Kozina</td>
<td>4268</td>
<td>404.050</td>
<td>94,7</td>
</tr>
<tr>
<td>Idrija</td>
<td>11963</td>
<td>403.307</td>
<td>33,7</td>
</tr>
<tr>
<td>Ig</td>
<td>7099</td>
<td>430.000</td>
<td>60,6</td>
</tr>
<tr>
<td>Ilirska Bistrica</td>
<td>13777</td>
<td>996.936</td>
<td>72,4</td>
</tr>
<tr>
<td>Ivančna Gorica</td>
<td>16050</td>
<td>459.390</td>
<td>28,6</td>
</tr>
<tr>
<td>Mesto</td>
<td>Naselje</td>
<td>Električno energije</td>
<td>Procent (%)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Izola</td>
<td>15813</td>
<td>1.396.709</td>
<td>88,3</td>
</tr>
<tr>
<td>Jesenice</td>
<td>21097</td>
<td>881.572</td>
<td>41,8</td>
</tr>
<tr>
<td>Jezersko</td>
<td>646</td>
<td>29.532</td>
<td>45,7</td>
</tr>
<tr>
<td>Juršinci</td>
<td>2385</td>
<td>74.907</td>
<td>31,4</td>
</tr>
<tr>
<td>Kamnik</td>
<td>29422</td>
<td>1.201.240</td>
<td>40,8</td>
</tr>
<tr>
<td>Kanal</td>
<td>5539</td>
<td>367.021</td>
<td>66,3</td>
</tr>
<tr>
<td>Kidričevo</td>
<td>6543</td>
<td>497.559</td>
<td>76,1</td>
</tr>
<tr>
<td>Kobarid</td>
<td>4144</td>
<td>407.443</td>
<td>98,3</td>
</tr>
<tr>
<td>Komen</td>
<td>3519</td>
<td>393.000</td>
<td>111,7</td>
</tr>
<tr>
<td>Komenda</td>
<td>5904</td>
<td>341.000</td>
<td>57,8</td>
</tr>
<tr>
<td>Kostanjevica na Krki</td>
<td>2427</td>
<td>130.941</td>
<td>54,0</td>
</tr>
<tr>
<td>Kranj</td>
<td>55764</td>
<td>2.251.657</td>
<td>40,4</td>
</tr>
<tr>
<td>Kranjska Gora</td>
<td>5347</td>
<td>317.653</td>
<td>59,4</td>
</tr>
<tr>
<td>Lenart</td>
<td>8246</td>
<td>608.068</td>
<td>73,7</td>
</tr>
<tr>
<td>Litija</td>
<td>15002</td>
<td>427.848</td>
<td>28,5</td>
</tr>
<tr>
<td>Ljubljana</td>
<td>286307</td>
<td>16.305.826</td>
<td>56,9</td>
</tr>
<tr>
<td>Ljubno</td>
<td>2621</td>
<td>60.898</td>
<td>23,2</td>
</tr>
<tr>
<td>Loška dolina</td>
<td>3860</td>
<td>256.500</td>
<td>66,4</td>
</tr>
<tr>
<td>Lukovica</td>
<td>5650</td>
<td>286.160</td>
<td>50,6</td>
</tr>
<tr>
<td>Maribor</td>
<td>111842</td>
<td>10.437.361</td>
<td>93,3</td>
</tr>
<tr>
<td>Markovci</td>
<td>3979</td>
<td>79.300</td>
<td>20,0</td>
</tr>
<tr>
<td>Medvode</td>
<td>15937</td>
<td>910.371</td>
<td>57,1</td>
</tr>
<tr>
<td>Metlika</td>
<td>8395</td>
<td>369.753</td>
<td>44,0</td>
</tr>
<tr>
<td>Mestnost</td>
<td>Vzročnik</td>
<td>Električna energija</td>
<td>Učinek</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Mežica</td>
<td>3619</td>
<td>97.644</td>
<td>26,9</td>
</tr>
<tr>
<td>Miklavž na Dravskem polju</td>
<td>6445</td>
<td>400.348</td>
<td>62,1</td>
</tr>
<tr>
<td>Naklo</td>
<td>5303</td>
<td>217.633</td>
<td>41,0</td>
</tr>
<tr>
<td>Nazarje</td>
<td>2579</td>
<td>111.486</td>
<td>43,3</td>
</tr>
<tr>
<td>Nova Gorica</td>
<td>31572</td>
<td>2.680.000</td>
<td>84,4</td>
</tr>
<tr>
<td>Novo mesto</td>
<td>36205</td>
<td>1.663.336</td>
<td>45,9</td>
</tr>
<tr>
<td>Ormož</td>
<td>12424</td>
<td>301.911</td>
<td>24,3</td>
</tr>
<tr>
<td>Osilnica</td>
<td>374</td>
<td>15.951</td>
<td>42,6</td>
</tr>
<tr>
<td>Poljčane</td>
<td>4456</td>
<td>348.624</td>
<td>78,2</td>
</tr>
<tr>
<td>Polzela</td>
<td>6091</td>
<td>301.584</td>
<td>49,5</td>
</tr>
<tr>
<td>Postojna</td>
<td>15922</td>
<td>1.315.795</td>
<td>82,6</td>
</tr>
<tr>
<td>Prebold</td>
<td>4996</td>
<td>72.720</td>
<td>14,5</td>
</tr>
<tr>
<td>Preddvor</td>
<td>3556</td>
<td>111.579</td>
<td>31,4</td>
</tr>
<tr>
<td>Radeče</td>
<td>4307</td>
<td>241.565</td>
<td>56,1</td>
</tr>
<tr>
<td>Radovljica</td>
<td>18875</td>
<td>679.832</td>
<td>36,1</td>
</tr>
<tr>
<td>Ravne na Koroškem</td>
<td>11303</td>
<td>292.659</td>
<td>25,9</td>
</tr>
<tr>
<td>Ribnica na Pohorju</td>
<td>1189</td>
<td>39.656</td>
<td>33,4</td>
</tr>
<tr>
<td>Ruše</td>
<td>7190</td>
<td>396.900</td>
<td>55,2</td>
</tr>
<tr>
<td>Semič</td>
<td>3801</td>
<td>180.791</td>
<td>47,6</td>
</tr>
<tr>
<td>Šenčur</td>
<td>8510</td>
<td>456.123</td>
<td>53,6</td>
</tr>
<tr>
<td>Šentjur</td>
<td>18967</td>
<td>578.579</td>
<td>30,5</td>
</tr>
<tr>
<td>Sevnica</td>
<td>17504</td>
<td>837.257</td>
<td>47,8</td>
</tr>
<tr>
<td>Škocjan</td>
<td>3244</td>
<td>70.333</td>
<td>21,7</td>
</tr>
<tr>
<td>Občina</td>
<td>Število stan.</td>
<td>Enotenija (kWh)</td>
<td>Udeleženost (%)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Škofja Loka</td>
<td>22920</td>
<td>1.005.356</td>
<td>43,9</td>
</tr>
<tr>
<td>Slovenske Konjice</td>
<td>14524</td>
<td>729.936</td>
<td>50,3</td>
</tr>
<tr>
<td>Šmarješke Toplice</td>
<td>3292</td>
<td>99.161</td>
<td>30,1</td>
</tr>
<tr>
<td>Šmartno pri Litiji</td>
<td>5509</td>
<td>321.798</td>
<td>58,4</td>
</tr>
<tr>
<td>Šoštanj</td>
<td>8767</td>
<td>311.958</td>
<td>35,6</td>
</tr>
<tr>
<td>Straža</td>
<td>3832</td>
<td>132.958</td>
<td>35,6</td>
</tr>
<tr>
<td>Sveti Tomaž</td>
<td>2074</td>
<td>18.697</td>
<td>9,1</td>
</tr>
<tr>
<td>Tišina</td>
<td>4102</td>
<td>194.709</td>
<td>47,5</td>
</tr>
<tr>
<td>Tržič</td>
<td>15016</td>
<td>746.263</td>
<td>49,7</td>
</tr>
<tr>
<td>Trzin</td>
<td>3844</td>
<td>188.798</td>
<td>49,1</td>
</tr>
<tr>
<td>Velenje</td>
<td>32868</td>
<td>1.220.252</td>
<td>37,1</td>
</tr>
<tr>
<td>Velike Lašče</td>
<td>4176</td>
<td>295.779</td>
<td>70,8</td>
</tr>
<tr>
<td>Vipava</td>
<td>5612</td>
<td>238.818</td>
<td>42,6</td>
</tr>
<tr>
<td>Vrhnika</td>
<td>16627</td>
<td>665.261</td>
<td>40,0</td>
</tr>
<tr>
<td>Zagorje</td>
<td>16763</td>
<td>750.000</td>
<td>44,7</td>
</tr>
<tr>
<td>Železniki</td>
<td>6745</td>
<td>266.736</td>
<td>39,5</td>
</tr>
<tr>
<td>Žetale</td>
<td>1335</td>
<td>14.776</td>
<td>11,1</td>
</tr>
<tr>
<td>Žiri</td>
<td>4845</td>
<td>168.825</td>
<td>34,8</td>
</tr>
<tr>
<td>Žirovnica</td>
<td>4392</td>
<td>196.355</td>
<td>44,7</td>
</tr>
<tr>
<td>Žužemberk</td>
<td>4580</td>
<td>169.518</td>
<td>37,0</td>
</tr>
</tbody>
</table>

Tabela 5: Poraba električne energije za JR v letu 2014 za občine udeležene v analizo
5 Povprečna poraba električne energije za JR na prebivalca v letu 2014

V letu 2014 je povprečna poraba električne energije za javno razsvetljavo na prebivalca znašala 55,8 kWh. Povprečje porabe v mestnih občin je bilo nekoliko višje in je znašalo 61,9 kWh na prebivalca, povprečje porabe v preostalih občinah pa je pod bilo pod skupnim povprečjem in je znašalo 49,7 kWh na prebivalca. Največjo porabo električne energije glede na prebivalca je imela občina Komen in sicer 111,7 kWh. Občini Komen sledijo občina Kobarid z 98,3 kWh na prebivalca, občina Hrpelje – Kozina z 94,7 kWh na prebivalca in mestna občina Maribor z 93,3 kWh na prebivalca. Najmanjšo porabo energije na prebivalca so leta 2014 imele občina Brda, Cirkulane, Dolenjske Toplice, Sveti Tomaž in občina Prebold. Vrednosti vseh izmed naštetih občin v letu 2014 niso presegle 20 kWh na prebivalca občine. Vse občine med navedenimi so podeželske, katerih razsvetljave se ne more primerjati z večjimi in gospodarsko bolj razvitimi občinami.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>61,9</td>
</tr>
<tr>
<td>Druge</td>
<td>49,7</td>
</tr>
<tr>
<td>Skupaj</td>
<td>55,8</td>
</tr>
</tbody>
</table>

Tabela 6: Prikaz porabe električne energije na prebivalca v letu 2014
Zgornja slika prikazuje podatke o porabi električne energije za javno razsvetljavo na prebivalca v letu 2014 v največjih slovenskih občinah glede števila prebivalcev. Razlika v porabi med občino Maribor z največjo porabo glede na število prebivalcev in občino Domžale je okoli 60 odstotkov. Vse izmed zgoraj analiziranih občin imajo več kot 30.000 prebivalcev.
Poraba električne energije na prebivalca

Med največjimi občinami glede na število prebivalcev je največjo porabo imela občina Maribor. V občini Maribor prebiva 111.842 prebivalcev s stalnim ali začasnim prebivališčem. Kriterij porabe električne energije na prebivalca ni verodostojen, saj ne upošteva gostote poselitve. Javna razsvetljava se projektira glede na površino cest, na kar se nanašajo tudi vsi standardi, ki regulirajo to področje, kot na primer: standard o minimalni svetlosti ali osvetljenosti, uniformnosti osvetlitve in podobno. To je razlog, da bodo imele občine z enakomerno in manjšo gostoto prebivalstva relativno večjo porabo na prebivalca kot gosto naseljene občine.

Slika 4: Graf odvisnosti porabe električne energije za JR na prebivalca od števila prebivalcev vseh analiziranih občin

Zgornja slika prikazuje graf odvisnosti porabe električne energije za javno razsvetljavo od števila prebivalcev vseh analiziranih občin. Podatkovne točke analiziranih mestnih občin so obarvane rdeče. V večini analiziranih občin število prebivalcev ne presega 50.000. Na zgornji sliki je razvidna neenakomerna poraba električne energije na prebivalca v odvisnosti od števila prebivalcev. Neenakomerna porabe električne energije na prebivalca v analiziranih občinah s podobnim številom prebivalcev je ogromna.
Največja odstopanja se kažejo v manjših občinah z do 10.000 prebivalci. Občina z največ prebivalci nima največje porabe električne energije na prebivalca, saj kriterij ne upošteva gostote poselitve.

Slika 5: Graf odvisnosti porabe električne energije na prebivalca od števila prebivalcev v ne mestnih analiziranih občin

Zgornja slika prikazuje graf odvisnosti porabe električne energije za javno razsvetljavo od števila prebivalcev ne mestnih analiziranih občin. Iz zgornje slike je razvidna neenakomerna poraba električne energije na prebivalca. V območju z do 5.000 prebivalci se poraba električne energije giblje od 9 kWh/prebivalca, pa do 111 kWh/prebivalca.
Poraba električne energije na prebivalca

Slika 6: Graf odvisnost porabe električne energije za JR na prebivalca od površine analiziranih občin

Zgornja slika prikazuje graf odvisnosti porabe električne energije za javno razsvetljavo od površine analiziranih občin. Podatkovne točke analiziranih mestnih občin so obarvane rdeče. Izmed analiziranih občin ima največjo površino občina Ilirska Bistrica in sicer 48.000 km², sledijo ji občina Bohinj z 33.370 km² in občina Idrija z 29.370 km². Najmanjšo površino izmed občin udeleženih v analizo ima občina Trzin z 860 km² [7]. Povprečna velikost analiziranih občin je 1128 km². Občine z večjo površino nimajo večje porabe električne energije na prebivalca, saj kriterij porabe energije glede na velikost občine ne upošteva gostote poselitve. Občine z večjo površino so povečini podeželske občine. Odstopanja med občinami udeleženimi v analizo niso tako izrazita kot v prejšnjem grafu.
6 Primerjava porabe energije po posameznih občinah

6.1 Občina Bled

<table>
<thead>
<tr>
<th>Leto</th>
<th>Poraba električne energije [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>500.000</td>
<td>61,38</td>
</tr>
<tr>
<td>2014</td>
<td>332.888</td>
<td>40,87</td>
</tr>
</tbody>
</table>

Tabela 7: Poraba električne energije za JR v občini Bled v letih 2008 in 2014
Poraba električne energije po posameznih občinah

Slika 7: Razlika v porabi energije za JR na prebivalca v občini Bled v letih 2006 in 2014

6.2 Občina Jesenice

V občini Jesenice prebiva 21.097 prebivalcev s stalnim ali začasnim prebivališčem. Leta 2006 je povprečna poraba električne energije za javno razsvetljavo znašala 1.444.000 kWh, kar pomeni 68,45 kWh na prebivalca. Leta 2014 pa 881.573 kWh, kar pomeni 41,77 kWh na prebivalca. Občina Jesenice načrta razsvetljave nima izdelanega. Poraba električne energije za javno razsvetljavo v občini Jesenice se je v osmih letih zmanjšala za okoli 40 odstotkov.

<table>
<thead>
<tr>
<th>Leto</th>
<th>Poraba električne energije [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>1.440.000</td>
<td>68,45</td>
</tr>
<tr>
<td>2014</td>
<td>881.573</td>
<td>41,77</td>
</tr>
</tbody>
</table>

Tabela 8: Poraba električne energije za JR v občini Jesenice v letih 2006 in 2014
Poraba električne energije po posameznih občinah

Slika 8: Razlika v porabi energije za JR na prebivalca v občini Jesenice v letih 2006 in 2014

6.3 Občina Vrhnika

<table>
<thead>
<tr>
<th>Leto</th>
<th>Poraba električne energije [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>828.850</td>
<td>49,85</td>
</tr>
<tr>
<td>2014</td>
<td>665.261</td>
<td>40,01</td>
</tr>
</tbody>
</table>

Tabela 9: Poraba električne energije za JR v občini Vrhnika v letih 2006 in 2014
Občina Železniki

Poraba električne energije po posameznih občinah

<table>
<thead>
<tr>
<th>Leto</th>
<th>Poraba električne energije [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>124.021</td>
<td>18,39</td>
</tr>
<tr>
<td>2007</td>
<td>135.244</td>
<td>20,05</td>
</tr>
<tr>
<td>2014</td>
<td>266.736</td>
<td>39,55</td>
</tr>
</tbody>
</table>

6.5 Občina Miklavž na Dravskem polju

<table>
<thead>
<tr>
<th>Leto</th>
<th>Poraba električne energije [kWh]</th>
<th>Poraba električne energije na prebivalca [kWh/preb.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>549.810</td>
<td>85,31</td>
</tr>
<tr>
<td>2007</td>
<td>557.631</td>
<td>86,52</td>
</tr>
<tr>
<td>2014</td>
<td>400.348</td>
<td>62,12</td>
</tr>
</tbody>
</table>

Ena izmed pozitivnih posledic Uredbe o mejnih vrednostih svetlobnega onesnaževanja okolja je zmanjšanje porabe električne energije za javno razsvetljavo in s tem posledično zmanjšanje stroškov za javno razsvetljavo. Poraba električne energije za javno razsvetljavo se je od leta 2007 v analiziranih občinah zmanjšala, z izjemo v občini Železniki. Večina občin je po letu 2007 prenovila javno razsvetljavo. Stare svetilke z slabimi optičnimi sistemmi (reflektorji in stekla) ter stare živosrebrne sijalke, so bile po prenovi zamenjane z visokotlačnimi natrijevimi sijalkami z bistveno manjšo močjo. Prihranki po prenovi so zelo odvisni od stanja razsvetljave pred prenovo. Prihranki se gibljejo od okoli 10 odstotkov pri prenovi razmeroma sodobne razsvetljave, pa do okoli 50 odstotkov pri prenovi zastarelih inštalacij.
7 Primerjava s podatki iz leta 2007, 2011 in 2014

Leta 2007 je povprečna poraba električne energije za javno razsvetljavo znašala 75,75 kWh na prebivalca letno. Povprečje mestnih občin je bilo višje in sicer 78,20 kWh na prebivalca, povprečje ostalih občin pa 73,77 kWh na prebivalca.

Leta 2011 je povprečna poraba električne energije za javno razsvetljavo znašala 63,57 kWh na prebivalca letno. Povprečje zgolj mestnih občin je znašalo 63,13 kWh na prebivalca, povprečje ostalih občin pa 63,90 kWh na prebivalca [2].

Iz zgornje slike je razvidno zmanjšanje porabe električne energije za javno razsvetljavo. Med letoma 2007 in 2011 se je poraba energije zmanjšala s 75,75 kWh na prebivalca, na 63,57 kWh na prebivalca, kar pomeni za okoli 16 odstotkov. Med letoma 2011 in 2014 pa s 63,57 kWh na prebivalca na 55,80 kWh na prebivalca, kar znaša okoli 12 odstotkov.

Zmanjšanje lahko pripisujemo zahtevi Uredbe o mejnih vrednostih svetlobnega onesnaževanja okolja, ki predpisuje letno omejitev na 44,5 kWh letne porabe električne energije na prebivalca in prenovi javne razsvetljave v posamezni občini. Večina občin se za prenovo javne razsvetljave odloči na podlagi finančnega stanja.
8 Ciljna vrednost 44,5 kWh

Uredba o mejnih vrednostih svetlobnega onesnaževanja okolja zahteva, da letna poraba vseh svetil, ki so na območju posamezne občine vgrajene v razsvetljavo občinskih cest in razsvetljavo javnih površin, ki jih občina opravlja, izračunana na prebivalca s stalnim ali začasnim prebivališčem v občini, ne sme presegati ciljne vrednosti 44,5 kWh.

Od analiziranih 87 občin je mejno vrednost porabljene električne energije za javno razsvetljavo preseglo 41 občin od tega pet mestnih, kar pomeni 53 odstotka analiziranih občin. Skladno z Uredbo je bilo 46 občin, od tega dve mestni, kar pomeni 47 odstotkov občin, udeleženih v analizo.

Slika 13: Razmerje občin, ki presegajo vrednost 44,5 kWh/preb.

Zgornja slika kaže na problematiko upoštevanja Uredbe. Kar 47 odstotkov analiziranih občin presegla vrednost letne porabe električne energije na prebivalca. Največja letna poraba električne energije na prebivalca je znašala 111,7 kWh. Velik odstotek preseženih vrednosti lahko prepisujemo zastareli javni razsvetljavi. S prenovo in vgradnjo svetilk z manjšo močjo se bo odstotek občin, ki presegajo mejno vrednost zmanjšal.

Ker večini občin primanjkuje finančnih sredstev za delovanje, prenova javne razsvetljave ne pride v poštev, zato obstajata samo dve možnosti: zmanjšanje porabe z izklopom javne razsvetljave ali nespremenjeno delovanje z zastarelo razsvetljavo in s tem kršenje Uredbe.
Število svetilk za javno razsvetljavo v slovenskih občinah

Podatek za število svetilk mi je uspelo pridobiti od 59 občin, od tega 7 mestnih. V analiziranih občinah je vgrajenih skupaj 110.753 svetilk, od tega 57.665 v mestnih in 53.088 v preostalih občinah. V mestnih občinah, kjer več urbanih jeder je vgrajenih več svetilk, zato je število svetilk v sedmih mestnih občinah večje kot v 52 ne mestnih.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Število svetilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>57.665</td>
</tr>
<tr>
<td>Druge</td>
<td>53.088</td>
</tr>
<tr>
<td>Skupaj</td>
<td>110.753</td>
</tr>
</tbody>
</table>

Tabela 12: Število svetilk za JR v obravnavanih slovenskih občinah

9.1 Povprečno število svetilk na prebivalca

V zajetih občinah prebiva 47 odstotkov prebivalcev Slovenije. Povprečno število svetilke na prebivalca občine znaša 0,11 svetilke na prebivalca, v mestnih 0,19 svetilke na prebivalca in v preostalih občinah 0,08 svetilk na prebivalca.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Število svetilk na prebivalca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>0,19</td>
</tr>
<tr>
<td>Druge</td>
<td>0,08</td>
</tr>
<tr>
<td>Skupaj</td>
<td>0,11</td>
</tr>
</tbody>
</table>

Tabela 13: Povprečno število svetilk za JR na prebivalca občine
9.2 Povprečna poraba električne energije za JR na svetilko

Leta 2014 je povprečna poraba električne energije na svetilko v analiziranih slovenskih občinah znašala 610,2 kWh na svetilko, v mestnih občinah 648,6 kWh na svetilko in v ostalih občinah 568,5 kWh na svetilko.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba energije na svetilko [kWh/svet.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>648,6</td>
<td></td>
</tr>
<tr>
<td>Druge</td>
<td>568,5</td>
<td></td>
</tr>
<tr>
<td>Skupaj</td>
<td>610,2</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 14: Povprečna poraba el. energije za JR na svetilko

Slika 14: Poraba električne energije za JR na svetilko
Cestna razsvetljava

10 Cestna razsvetljava

Poraba električne energije na kilometer osvetljenih cest v letu 2014

Podatek za dolžino osvetljenih cest sem pridobil iz načrta razsvetljave. Kljub zahtevi 21. člena Uredbe o mejnih vrednostih svetlobnega onesnaževanja okolja, ki od občine zahteva podatek za celotno dolžino in površino osvetljenih cest in drugih javnih površin, če gre za razsvetljavo cest ali javnih površin. Poraba električne energije na kilometer osvetljene ceste je eden izmed najboljših meril za trajnost ali ekonomičnost javne razsvetljave. Ta kazalnik vsebuje bistvo javne razsvetljave, to je osvetljevanje javnih površin. Seveda v njem niso všteti drugi tipi javnih razsvetljav, kot na primer osvetlitev fasad ali kulturnih spomenikov, vendar je to zanemarljiva napaka.

Podatek za celotno dolžino osvetljenih cest mi je uspelo pridobiti samo od 19 občin v Sloveniji. Povprečna poraba električne energije na osvetljen kilometer ceste v analiziranih občinah je leta 2014 znašala 222.086 kWh. V treh mestnih občinah je znašala povprečna poraba električne energije na osvetljeni km ceste 45.931 kWh, v preostalih občinah pa 176.155 kWh/km.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba na osvetljen km ceste [kWh/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>45.931</td>
</tr>
<tr>
<td>Druge</td>
<td>176.155</td>
</tr>
<tr>
<td>Skupaj</td>
<td>222.086</td>
</tr>
</tbody>
</table>

Tabela 15: Poraba energije za JR na km ceste
10.2 Poraba električne energije na kilometer osvetljene ceste v analiziranih občinah v letu 2014

Cestna razsvetljava je praktično že 100 let nepogrešljiv sestavni del življenja. Žal pa je pri nas marsikje cestna razsvetljava bolj sama sebi namen. Tako kot v drugih vejah tehnike tudi tu namreč velja, da je kakovost odločilno povezana z modernostjo. Stara cestna razsvetljava nudi le malo varnosti, poleg tega pa je energijsko potratna in ekološko sporna. S slabim vzdrževanjem pa se razmere samo poslabšujejo. Ob ustreznem načrtovanju nove cestne razsvetljave bi bilo zato potrebno razmišljati tudi o ustreznim obnovi stare.
11 Poraba električne energije na površino

11.1 Razsvetljene javne površine

Podatek za površino razsvetljene javne površine in porabo električne energije za javno razsvetljavo v letu 2014 sem uspel pridobiti od dvajsetih občin, od tega ene mestne. Povprečna poraba na m^2 osvetljenih javnih površin je skupno znašala 10,63 kWh. V mestni občini Nova Gorica 5,52 kWh/m2 in v ostalih 29,11 kWh/m2.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba na osvetljen m2 javne površine [kWh/m2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne (Nova Gorica)</td>
<td>5,52</td>
</tr>
<tr>
<td>Druge</td>
<td>29,11</td>
</tr>
<tr>
<td>Skupaj</td>
<td>10,63</td>
</tr>
</tbody>
</table>

Tabela 16: Prikaz porabe električne energije za JR na m2 javne površine
11.2 Razsvetljene fasade ali kulturnega spomenika

Podatek za porabo električne energije in površino razsvetljene fasade ali kulturnega spomenika, mi je uspelo pridobiti od 16 občin, od tega od dveh mestnih in 14 drugih.

<table>
<thead>
<tr>
<th>Občina</th>
<th>Poraba na osvetljen (m^2) fasade ali kulturnega spomenika [kWh/ m^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mestne</td>
<td>566,64</td>
</tr>
<tr>
<td>Druge</td>
<td>66,12</td>
</tr>
<tr>
<td>Skupaj</td>
<td>131,31</td>
</tr>
</tbody>
</table>

Tabela 17: Prikaz porabe električne energije za JR na \(m^2\) razsvetljene fasade ali kulturnega spomenika

Kljub 21. členu Uredbe o mejnih vrednostih svetlobnega onesnaževanja okolja, bi morali vsi načrti razsvetljave vsebovati tudi podatke o celotni površini osvetljenih javnih površin in površini fasad ali kulturnega spomenika, so podatki zgolj pogojno uporabni, zaradi minimalnega števila občin kater imajo zbrane vrednosti. Popolne načrte razsvetljave in s tem vse podatke zahtevane v načrту razsvetljave ima izdelanih samo okoli 12 odstotkov vseh občin Slovenije. Podatek o oglasni površini in električni moči vseh notranjih svetilk, če gre za razsvetljavo oglasnega objekta, pa sem uspel pridobiti samo od dveh občin.
12 Sklep

V prvem delu diplomske naloge je predstavljena Uredba o mejnih vrednostih svetlobnega onesnaževanja okolja. Od leta 2007, ko je bila sprejeta Uredba se je stanje javne razsvetljave precej spremenilo. Čedalje več slovenskih občin se zadnja leta odloča za posodobitev javne razsvetljave, ne le zaradi prihrankov pri porabi električne energije, manjšega svetlobnega onesnaževanja okolja in manjših emisij ogljikovega dioksida in zato čistejšega okolja, ampak tudi zaradi zahtev Uredbe. Uredba omejuje porabo energije z javno razsvetljavo na 44,5 kWh na prebivalca letno.

Velika večina občin je od leta 2007 pa do danes prenovila javno razsvetljavo, posledično se poraba električne energije zmanjšuje iz leta v leto.

V poglavju 'Poraba električne energije za javno razsvetljavo', je prikazana poraba energije za javno razsvetljavo v letu 2014 in poraba električne energije za javno razsvetljavo na prebivalca za vsako analizirano občino posebej. Povprečna poraba električne energije za javno razsvetljavo na prebivalca analiziranih občin je leta 2014 znašala 55,8 kWh.

V poglavju 'Ciljna vrednost 44,5 kWh' je prikazana problematika upoštevanja Uredbe. Izmed občin udeleženih v analizo je kar 53 odstotkov občin leta 2014 preseglo vrednost 44,5 kWh na prebivalca.

Javna razsvetljava izboljša kakovost življenja, zato je pomembno, da se ekonomičnost in trajnost javne razsvetljave v Sloveniji v zadnjih letih izboljšuje.
13 Literatura

