PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH

Robert Sotler1, Borut Poljšak2, Raja Dahmane3, Tomislav Jukić4, Doroteja Pavan Jukić5, Cecilija Rotim6, Polonca Trebše3 and Andrej Starc7

1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia

SUMMARY – This review article is focused on the impact of antioxidants and prooxidants on health with emphasis on the type of antioxidants that should be taken. Medical researchers suggest that diet may be the solution for the control of chronic diseases such as cardiovascular complications, hypertension, diabetes mellitus, and different cancers. In this survey, we found scientific evidence that the use of antioxidants should be limited only to the cases where oxidative stress has been identified. This is often the case of specific population groups such as postmenopausal women, the elderly, infants, workers exposed to environmental pollutants, and the obese. Before starting any supplementation, it is necessary to measure oxidative stress and to identify and eliminate the possible sources of free radicals and thus increased oxidative stress.

Key words: Oxidative stress; Antioxidants; Diet; Chronic disease; Dietary supplements; Free radicals

Introduction

Today, the world is witnessing an upsurge in chronic diseases such as cardiovascular complications, hypertension, diabetes mellitus, and different cancers. Medical researchers suggest that diet may be the solution for the control of these chronic diseases. Diets rich in fruits and vegetables have been reported to have a protective effect against cardiovascular disease and cancer1-4. The nutrients thought to provide protection by fruits and vegetables are antioxidants5,6. Oxidative stress is the basic etiology of disease and can be viewed as an imbalance between antioxidants and prooxidants in the body. Antioxidants that can react with molecular oxygen and are reducing agents can act as prooxidants. Under aerobic conditions, they generate superoxide radicals and dismutate to H2O2, which reacts with reduced metal ions and superoxide to form toxic reactive oxygen species (ROS). For example, flavonoids can react as prooxidants when a reduced metal is available, and tocopherols can also act as prooxidants when transition metals such as Cu(I) are present, but this depends on the matrix environment in which it is...
Present. It might not always be beneficial to increase cellular viability with a high dose of antioxidants such as beta-carotene or vitamin E prior to toxic compound-induced exposure (ionizing radiation, UV radiation, cigarette smoke). ROS scavengers, such as ascorbic acid, can act in oxidation-reduction reactions both as prooxidants and antioxidants, depending on the conditions7-10.

The question is whether decreasing damage with antioxidants may boost the occurrence of neoplasia by permitting genetically damaged cells to survive. The research by Halliwell and Gutteridge11 confirmed this hypothesis. After vitamin supplementation, the subject mortality rate increased, which was probably the result of the antioxidant effect on cell proliferation9,10. Malignancy may be enhanced under the antioxidant activity that encourages survival of precursor tumor cells in altered matrix environments.

In spite of the high number of antioxidant studies provided by Pubmed, it is still not clear if the antioxidant supplementation is beneficial or harmful, especially for the healthy well-nourished populations. The goal of this article is to review the impact of antioxidants and prooxidants on health and find the answer to the question: should supplements of antioxidants be taken?

Natural Antioxidants

Halliwell and Gutteridge11 defined antioxidants as “any substance that delays, prevents or removes oxidative damage to a target molecule”. Others defined them as “any substance that directly scavenges ROS or indirectly acts to up-regulate antioxidant defenses or inhibits ROS production”. The antioxidant activity is effective through different ways, i.e. by interrupting propagation of the auto-oxidation chain reaction; as inhibitors of free radical oxidation reaction; as inhibitors of prooxidative enzymes; as reducing agents that convert hydroperoxides into stable compounds; as metal chelators that convert iron and copper (metal prooxidants) into stable products; and as singlet oxygen quenchers10,12,13. It seems likely that, in vivo, the activation of enzymatic antioxidant defenses is more important than radical scavenging14 by exogenous antioxidants ingested from the food.

Endogenous antioxidative cell defenses include a network of enzymatic and non-enzymatic molecules

Fig. 1. Classification of antioxidants20-22,93,94.
that are distributed within the cytoplasm and cell organelles (Fig. 1). The enzymatic antioxidants are divided into primary and secondary enzymatic defenses. The primary antioxidant enzymes, such as superoxide dismutase (SOD), several peroxidases and catalase, catalyze a cascade of reactions to convert ROS to more stable molecules such as H₂O and O₂. One molecule of catalase can convert 6 billion molecules of hydrogen peroxide. Superoxide dismutase catalyzes dismutation of superoxide anion (O₂⁻) to H₂O₂ and O₂. The rate of this enzymatic dismutation is approximately 10,000 times greater than the spontaneous rate. SOD converts superoxide anions into hydrogen peroxide as a substrate for catalase.

Besides primary enzymes, a large number of secondary enzymes (glutathione reductase and glucose-6-phosphate dehydrogenase) do not neutralize ROS directly, but act in association with other endogenous antioxidants. Glutathione reductase reduces glutathione and recycles it to neutralize even more ROS. Glucose-6-phosphate dehydrogenase regenerates nicotinamide adenine dinucleotide phosphate (NADPH) creating a reducing condition.

There are quite a number of non-enzymatic endogenous antioxidants. Cofactor as coenzyme Q₁₀ is present in cells and membranes and plays an important role in cellular metabolism and in the respiratory chain. Turunen et al. report that this coenzyme Q₁₀ neutralizes the lipid peroxyl radicals and regenerates vitamin E. Vitamin A (retinol) is produced by the liver. There are different forms of vitamin A; their antioxidant effect is the ability to combine with peroxyl radicals before they propagate peroxidation to lipids. Uric acid is a nitrogen non-protein compound that has an important function within the body (after undergoing renal filtration, 90% of it is reabsorbed). It prevents the lysis of erythrocytes and is an important scavenger of singlet oxygen.

Small molecular-weight non-enzymatic antioxidants, i.e. glutathione, vitamins E and C, minerals such selenium, and NADPH act as scavengers of ROS. Glutathione is an organosulfur compound, which besides protecting cells against radicals, regenerates vitamin C.

Vitamin C (ascorbic acid) is the major hydrophilic antioxidant and a powerful inhibitor of lipid peroxidation. It can scavenge the reactive nitrogen oxide, superoxide radical anion, hydroxyl radical and singlet oxygen, and promotes the regeneration of alpha-tocopherol.

Vitamin E is composed of four isoforms of tocopherols and four isoforms of tocotrienols. Alpha tocopherol is the most abundant and potent; it halts lipid peroxidation and then protects the lipid structure of cell membranes; it is thought to prevent atherosclerosis. Selenium and zinc are found in trace quantities but play an important role in animal and human metabolism. Selenium does not act directly on ROS but is an important part of the antioxidant enzymes (e.g., glutathione peroxidase). Just like selenium, zinc does not attack ROS directly, but prevents their formation.

Flavonoids are natural food-derived components (fruits, vegetables and herbs) that have received great attention in the last decades. They are composed of flavonols, flavanols, anthocyanins, isoflavonoids, flavones and flavones. All these categories share the same diphenylpropane skeleton. The most abundant flavonol is quercetin; it prevents oxidative stress and cell death by scavenging ROS, chelating metal ions and quenching singlet oxygen. The most abundant flavonol is catechin present in red wines; it has an important antioxidant, anti-inflammatory effect and estrogenic growth-promoting effect.

Phenolic acids are divided in two groups, hydroxy-cinnamic (ferulic acid, p-coumaric) and hydroxybenzoic acids (gallic and ellagic acid). They act as chelators and ROS scavengers with special effect on hydroxyl and peroxy radicals. The most promising compound is gallic acid (precursor of tannins).

Synthetic Antioxidants

Synthetic antioxidants are added to the food so it can withstand different treatments. Their focus is to prevent food oxidation, especially fatty acids. Today, almost all processed foods have synthetic antioxidants incorporated and are reported to be safe, although some studies indicate otherwise. Butylated hydroxytoluene (BHT) and butylated hydroxyanizole (BHA) are the most widely used synthetic antioxidants. The European food safety authority has established revised acceptable daily intakes (ADIs) of 0.25 mg/kg bw/day for BHT and 1.0 mg/kg bw/day for BHA. Octyl gallate (OG) seems to be safe to use because it is hydrolyzed after ingestion into gallic acid and octanol, which are present in plants.
Table 1. Different classes of agents with prooxidant properties, their mechanism of oxidative stress generation and their prevention with antioxidants

<table>
<thead>
<tr>
<th>Class of Agents</th>
<th>Mechanism of Oxidative Stress Generation</th>
<th>Prevention with Antioxidants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollutants: ozone (O<sub>3</sub>), sulfur dioxide (SO<sub>2</sub>), cigarette smoke, nitrogen oxides (NO<sub>x</sub>), particulate matter (PM)</td>
<td>Generate excessive amounts of superoxide, hydrogen peroxide and hydroxyl radical which results in increased oxidative DNA lesions, Inhibitory effects on oxidative stress-related enzymes, Increased 8-isoprostane, 8-Hydroxy-2′-deoxyguanosine</td>
<td>Catalases, glutathione peroxidases, peroxiredoxins, Vitamins C, E, GSH, beta-carotene, N-acetylcysteine, deferoxamine and green tea extracts</td>
</tr>
<tr>
<td>Ionizing and non-ionizing radiation</td>
<td>Increased superoxide (O<sub>2</sub>•⁻), H<sub>2</sub>O<sub>2</sub>, singlet oxygen, peroxy radical, and hydroxyl radical (OH•) formation, Increased DNA damage and lipid membrane damage, Altered antioxidant defense systems, depletion of endogenous antioxidants</td>
<td>Melatonin, vitamin A, C, E, lycopene, L-selenomethionine, alpha-lipoic, N-acetyl cysteine, curcumin, green tea polyphenols, ginkgo biloba, L-carnitine, selenium, lutein and pycnogenol</td>
</tr>
<tr>
<td>Pesticides: paraquat, organo-phosphate insecticides, aldrin and dieldrin, DDT, polychlorinated dibenzo-para-dioxins (dioxins) and polychlorinated dibenzo furans (furans), polychlorinated biphenyls (PCBs)</td>
<td>Stimulation of free radical production, Alterations in antioxidant enzymes and the glutathione redox system, Decreased antioxidant defense, Increased level of malondialdehyde, lipid peroxidation, DNA damage</td>
<td>Dietary flavonoids (epigallocatechin-3-gallate (EGCG) and quercetin, Vitamins A, C, E, selenium, lycopene, melatonin, zinc</td>
</tr>
<tr>
<td>Redox-active metals: iron, copper, chromium, vanadium and cobalt</td>
<td>Reduced forms of redox-active metal ions participate in Fenton reaction where hydroxyl radical (HO•) is generated from hydrogen peroxide. Furthermore, the Haber-Weiss reaction, which involves the oxidized forms of redox-active metal ions and superoxide anion, generates the reduced form of metal ion, which can be coupled to Fenton chemistry to generate hydroxyl radical</td>
<td>Metal-chelating antioxidants such as transferrin, albumin, and ceruloplasmin avoid radical production by inhibiting Fenton reaction catalyzed by copper and iron</td>
</tr>
<tr>
<td>Sport activity, excessive exercise</td>
<td>Increased ROS formation: excessive amounts of superoxide, hydrogen peroxide and hydroxyl radical</td>
<td>Increases in endogenous free radical defense systems by increasing muscle levels of SOD, glutathione peroxidase and reduced glutathione (GSH)</td>
</tr>
<tr>
<td>Drugs: analgesic (paracetamol) or anticancerous drug (methotrexate)</td>
<td>ROS generation</td>
<td>Increases in endogenous antioxidative and damage repair systems</td>
</tr>
<tr>
<td>Excessive psychophysical stressful situations</td>
<td>Increased catecholamine metabolism, which increases oxidative stress by increasing the production of free radicals. Emotional stress can diminish the effectiveness of the immune system and effectiveness of the antioxidant system and repair processes, increased biomarkers for oxidative stress</td>
<td>Glutathione, relaxing techniques such as yoga</td>
</tr>
<tr>
<td>Water disinfection by products</td>
<td>ROS production (OH, H<sub>2</sub>O<sub>2</sub>, and singlet O<sub>2</sub>)</td>
<td>Ascorbate, desferal, N-acetyl-cysteine, Deferoxamine, green tea, catechins, Melatonin, thioallyl compounds from garlic, Trolox, glutathione</td>
</tr>
<tr>
<td>Antioxidants: ascorbic acid, vitamin E, polyphenols</td>
<td>Act as prooxidant under certain circumstances, for example, in the presence of transitional metals or in excessive amounts</td>
<td>Increased activity of endogenous antioxidative and repair systems</td>
</tr>
</tbody>
</table>
Prooxidants

Prooxidants are defined as chemicals that induce oxidative stress, through formation of ROS or by inhibiting the antioxidant system. They may be classified into several categories (Table 1), as follows: drugs, redox-active metals, pesticides, physical exercise, mental anxiety, pathophysiological conditions, environmental factors (air pollutants and ionizing and non-ionizing radiation), water disinfection products, and antioxidants30.

Drugs such as analgesic (paracetamol) or antican-cerous (methotrexate) agents generate ROS and alter macromolecules, which can finally damage liver and kidney tissues. Redox-active metals such as iron and copper can induce Fenton reaction and Haber-Weiss reaction leading to excessive formation of ROS. For example, hematochromatosis is a prooxidant disease due to high iron level, and Wilson disease results in copper overload in the liver and brain31-33. Pesticides such as DDT stimulate ROS generation, induction of lipid peroxidation, and alteration of the antioxidant enzymes and glutathione redox system. Rigorous physical exercise such as running and weight lifting generates the production of ROS because of muscle contraction and increased oxygen consumption. Mental anxiety and apprehension induce imbalance in the redox system and lead to neuro-inflammation, neurodegeneration, inhibition of neurogenesis and mitochondrial dysfunction. Local ischemia also increases ROS generation. Environmental factors and adaptation to extreme weather disrupt the mitochondrial membrane fluidity and transfer of electrons leading to ROS generation. Vitamins C and E or polyphenols can act as prooxidants under certain conditions7,9,11,28,30-34.

Prooxidant Activities of Antioxidants

Surprisingly, some popular antioxidants have been reported to have prooxidant behavior. At least three factors can influence the function of an antioxidant transforming it to a prooxidant; these factors include the presence of metal ions, the concentration of the antioxidant in matrix environments and its redox potential35-37.

Vitamin C is a potent antioxidant but it can inter-vene as a prooxidant depending on the dose. It can have an antioxidant effect in case of low dose (30-100 mg/kg body weight) and prooxidant effect in case of high dose (1000 mg/kg body weight)38. The prooxidant effect of vitamin C also occurs when it combines with iron, reducing Fe3+ to Fe2+ or with copper reducing it from Cu2+ to Cu+39,40. The reduced transition metals in turn reduce hydrogen peroxide to hydroxyl radicals through Fenton reaction41,42. The supplementation of vitamin C and trolox (water-soluble analog of vitamin E) may result in lower normal biological response to free radicals and create an environment that is more sensitive to oxidation. These antioxidants might pro-voke mild oxidative stress due to their prooxidative properties43.

Alpha-tocopherol is also known as a potent anti-oxidant and harmful prooxidant in high concentra-tions. When reacting with ROS, it becomes a radical itself, and if there is not enough vitamin C for its re-generation, it remains in the reactive state8,9.

The prooxidant activity of beta-carotene depends on its interaction with biological membranes and the presence of co-antioxidants such as vitamin C. At higher oxygen tension, beta-carotene loses its effectiveness as antioxidant. A systematic review and meta-analysis revealed increased mortality rates after prolonged use of supplements with beta-carotene, vitamin A and vitamin E44.

Even flavonoids have been reported to act as prooxidants in the systems that contain transition metals7. Flavonoids, such as quercetin and kaempferol, induce DNA damage and lipid peroxidation in the presence of the transition metal.

Phenolics can also display prooxidant effects, espe-cially in a system containing redox-active metals. The presence of iron or copper catalyzes their redox cycling and may lead to the formation of phenolic radicals which damage lipids and DNA45,46.

Should Supplements of Antioxidants Be Taken?

Diseases that have positive correlation to oxidative stress

The oxidative stress of biological systems is defined as the harmful effect of ROS causing biological dam-age. It is evident when there is an excessive production of ROS or a deficiency of enzymatic and non-enzymatic antioxidants47-51.
The most sensitive organ to ROS damage is the brain because of the low total antioxidant capacity, high consumption of total body oxygen (20%), high levels of polyunsaturated fatty acids, and low levels of iron-binding proteins (ferritin). These characteristics associate neurodegenerative diseases (Alzheimer's and Parkinson's diseases) with oxidative stress52,53.

The relationship between oxidative stress and immune function of the body is well established. Oxidative stress can induce production of free radicals that can modify proteins. Alterations in self-antigens (modified proteins) can instigate the process of autoimmune diseases. There are different examples of autoimmune diseases resulting from oxidative damage to self-proteins, namely, systemic lupus erythematosus (60 kD Ro ribonucleoprotein)54 and diabetes mellitus (high molecular weight complexes of glutamic acid decarboxylase)55.

Beatty et al.56 demonstrated the role of oxidative stress in the pathogenesis of age-related macular degeneration. Oxidative stress is also reported to be the cause of induction of allergies; it has been revealed that reduced NADPH oxidase is present in pollen grains and can lead to induction of airway associated oxidative stress. Such oxidative damage is responsible for developing allergic inflammation in sensitized animals.

Different research studies demonstrated the neoplastic effect of persistent oxidative stress. Oxidative stress due to altered inflammation acts as a precancerous state of host cells leading to the initiation of genetic mutations, genetic errors, epigenetic abnormalities, wrongly coded genome, and impaired regulation of gene expression49,57.

According to multiple studies58-61, oxidative stress is also linked to atherosclerosis (because of the reduced NADPH oxidase system), glomerular nephropathy (because of glutathione transferase kappa deficiency) and osteoarthritis (radical oxygen species). Filippo et al.62 claim that oxidative stress is the leading cause of acute myocardial infarction in diabetics.

Effect of antioxidants on health and disease

In the last decades, antioxidants have been extensively studied9,10,12,13 and proposed as supplementation in reducing the incidence of cancer and ischemic vascular disease93,64. Unfortunately, the value of antioxidant strategies seems debatable since supplementation studies showed unreliable and ambiguous outcomes. According to the National Institutes of Health65, most of the data examined on using antioxidants fail to give reliable evidence as to beneficial effects on health when the supplements are taken either singly, in pairs, or in combinations of three or more.

The controversy around dietary antioxidants is due to their capacity to act as prooxidants depending on their concentration and the nature of surrounding molecules66. Schafer67 confirmed this hypothesis in his study, which revealed an unexpected mechanism of cell survival in unnatural matrix environments by antioxidant restoration, which might be disrupted with supplementation of only one antioxidant leading to alteration of the apoptosis reaction. Additionally, ingestion of synthetic antioxidants can lower the synthesis of endogenous antioxidants, as reported in subjects performing sports activity. For example, antioxidant therapy (using different synthetic antioxidants such as vitamins A, C, E, and resveratrol) can even prevent the beneficial effects obtained with regular exercise, most probably due to the reduced mitochondrial biogenesis, which is stimulated by excessive ROS formation. Additionally, the imbalance caused by reducing ROS and/or increasing the antioxidant capacity affects cellular signaling and thus could mitigate the training benefits68,69.

Antioxidants may thus have contradictory influence on cancer development; they can prevent oxidative stress to DNA and then stop tumorigenesis; they also can allow survival of damaged cells and then promote tumorigenesis70,71. The research by Chen and Guarente72 demonstrated correlation between metastasis of breast cancer cells to the brain and enhanced pentose phosphate pathway flux with an increased antioxidant capacity.

Antioxidants also failed to provide satisfying protection to the brain because of the blood brain barrier73. Some authors found resveratrol to be identified as a natural therapeutic agent with pharmacological potential against a wide range of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and alcohol-induced neurodegenerative disorder74. It was found75 that in vitro polymerization of the β-amyloid peptide was markedly inhibited by resveratrol, which stimulates the proteosomal degradation of the β-amyloid peptides76. A limitation regarding the
results of this research is that cell cultures, which react to antioxidants in vitro, are leading to erroneous interpretation and are usually overlooked by peer-review. Direct investigation of oxidative damage ramifications and prooxidant effect on humans due to their molecular and physiological complexity is of outmost importance.

Findings from rodents and worms to humans should be approached with caution. Laboratory mice are more sensitive to dietary antioxidants than humans.

Different routes of antioxidant administration may cause different metabolic interactions; for example, the per os route can be neutralized during transit to the intestine, where the liver sequesters some amounts, so that the bioavailability of the original antioxidant for other tissues is reduced (reduced glutathione). Flavonoids are markedly biotransformed by intestinal microorganisms and therefore aglycone bioflavonoids, which are frequently introduced in many promising in vitro research studies, pass through the intestinal absorption barrier and enter the bloodstream at a defined molar concentration range.

The amount of daily intake of synthetic antioxidants presents another major limitation. Some scientists and pharmacological companies suggest consuming larger amounts of antioxidants to effectively fight oxidative stress. It should be emphasized that the recommended daily intake (RDA) values of vitamins should not be exceeded, although there have been arguments that RDA levels are too low.

In the Cochrane systematic reviews on antioxidants and all cause mortality, there was no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.

Does antioxidant supplementation make sense?

The contemporary human population presents an increase in the senior fraction of people (65 years and older) that have an importance from the health point of view. Because of this demographic fact, nutrition and dietary supplementation with antioxidants has become very popular. Nevertheless, until now, no clinical studies and treatment with synthetic antioxidants have been able to produce significant desired results.

Selman et al. proposed some possible explanations for the inability of antioxidants to ensure longevity in animals and to reduce the incidence of disease in humans. In vivo, some antioxidants may act more as prooxidants than antioxidants as they possibly constrain higher activation of the defense system to keep the status quo. The knowledge of the mechanisms of bioavailability, biotransformation, and interaction of antioxidant supplements is yet insufficient.

However, the use of antioxidant supplements should be limited only to the cases in which oxidative stress is well documented. Before starting any supplementation, it is necessary to measure oxidative stress and to identify and eliminate the possible sources of free radicals and thus increased oxidative stress. The institutionalized seniors often show signs of malnutrition; previous research shows that the elderly are at a particular risk due to deficiency of vitamins (B₁₂ and D) and trace elements. They can even increase their need for nutrient intake because of changes in the absorptive and metabolic capacity. For vulnerable groups, different supplements such as folic acid for women of childbearing age, iron supplements for women with heavy menstrual flow, vitamin D for young children, pregnant women and older (housebound) people are recommended. Moreover, magnesium could be useful in the management of hypertensive heart disease, Alzheimer’s and osteoporosis. Omega-3 fatty acids presumably lower the risk of cardiovascular disease and cancer. Garlic extracts fight viral and bacterial infections and prevent chronic inflammation.

People who consume fruits and vegetables, which are a rich source of antioxidants, are at a lower risk of cardiovascular and some neurological diseases. Evidence shows that some varieties of vegetables and all kinds of fruit have anticarcinogenic properties. This indicates that some other substances in fruits and vegetables (flavonoids), or a mixture of substances (synergism) might add to the improved cardiovascular health and decreased cancer incidence, as it was observed in the individuals consuming more of such foods.

Discussion

The most recent epidemiological data on the treatment with synthetic antioxidants indicate that the results were ambiguous and even misleading; they were
found to be toxic, neutral, and even beneficial. It was only scientifically evidenced that supplementation with antioxidants should be limited only to cases where oxidative stress has been identified, which is often the case in specific population groups such as post-menopausal women, the elderly, infants, workers exposed to environmental pollutants, and the obese. Meanwhile, diets rich in fruits and vegetables, which are rich sources of antioxidants, are beneficial for one’s health and act as anti-aging agents.

Acknowledgment

The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P3-0388).

References

29. EFSA. Panel on food additives and nutrient sources added to food (ANS); Scientific opinion on the reevaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J. 2012;10(3):2588.

32. Cumings JN. The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain. 1948 Dec;71(Pt. 4):410-5.

73. Forteza S, Tavares L, Pimpano R, Tyagi M, Pontes V, Alves PM, McDougall G, Stewart D, Ferreira RB, Santos CN. Anti-
74. Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a thera-
76. Marambaud P, Zhao H, Davies P. Resveratrol promotes clear-
80. Macpherson H, Pipingas A, Pase MP. Multivitamin multimin-
eral supplementation and mortality: a meta-analysis of ran-
82. Selman C, McLaren JS, Meyer C, Duncan JS, Redman P, Collins AR, Durthie GG, Speakman JR. Life-long vitamin C supple-
mentation in combination with cold exposure does not af-
defect oxidative damage or lifespan in mice, but decreases expres-
40. (in German)
86. Glick JL. Dementias: the role of magnesium deficiency and a

Sažetak

PROOKSIDACIJSKE AKTIVNOSTI ANTIOKSIDANSA I NJIHOV UTJECAJ NA ZDRAVLJE

Ovaj pregledni članak se bavi utjecajem antioksidansa i prooksidansa na zdravlje s naglaskom na tip antioksidansa koji treba uzimati. Medicinski istraživači predlažu da dijeta može biti rješenje za kontrolu kroničnih bolesti kao što su kardiovascularne komplikacije, hipertenzija, dijabetes melitus i različite vrste raka. U ovom pregledu našli smo znanstvene dokaze da upotreba antioksidansa treba biti ograničena samo na slučajeve gdje je prisutan oksidativni stres. To je često slučaj određenih populacijskih skupina kao što su žene u postmenopauzi, starije osobe, djeca, radnici izloženi onečišćivačima okoliša i pretile osobe. Prije početka bilo koje nadoknade obvezno je izmjeriti oksidativni stres te identificirati i ukloniti moguće izvore slobodnih radikala i posljedično povišeni oksidativni stres.

Ključne riječi: Oksidativni stres; Antioksidansi; Dijeta; Kronična bolest; Prehrana, dodaci; Slobodni radikali

Vol. 58, No. 4, 2019
Acta Clin Croat.