Univerza v Ljubljani

Fakulteta za elektrotehniko

Zorin Hribernik Sever

Nadgradnja transportne linije

Diplomsko delo visokošolskega strokovnega študija

Mentor: doc. dr. Vito Logar

Ljubljana, 2019
Zahvala

Vsebina

1 Uvod .. 13

2 Opis sistema 15
 2.1 Naročnikove zahteve .. 16
 2.2 Naprave .. 16
 2.2.1 Mize ... 17
 2.2.2 Prehod .. 26
 2.2.3 Vzdrževalni operaterski pult ... 29
 2.2.4 Servisna plošča dostopa .. 30
 2.2.5 Svetlobna zavesa ... 33
 2.2.6 Senzorji .. 35
 2.2.7 Operaterski pulti ... 39

3 PLC program .. 42
 3.1 Konfiguracija sistema .. 43
 3.2 Cona 1 – zalogovnik ... 45
 3.2.1 Mapiranje signalov .. 48
 3.2.2 Premik mize ... 48
 3.2.3 Miza A0 ... 53
 3.3 Cona 3 – servisni izvoz sani .. 58
 3.3.1 Prehod med mizami .. 61
 3.3.2 Servisna pulta ... 63
 3.3.3 Miza C2 ... 66

4 HMI – uporabniški vmesnik 70
4.1 Shema linije .. 71
4.2 Potek delovanja ... 72
4.3 Napake in navodila .. 74
4.4 Ročno upravljanje .. 75

5 Zaključek 77

6 Literatura 79
Seznam uporabljenih simbolov

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>Motor valjčne mize</td>
</tr>
<tr>
<td>ML</td>
<td>Motor dvižne mize</td>
</tr>
<tr>
<td>DE</td>
<td>Senzor prisotnosti zadaj (obstoječi)</td>
</tr>
<tr>
<td>DPA</td>
<td>Senzor prisotnosti spredaj</td>
</tr>
<tr>
<td>DDPA</td>
<td>Senzor prekoračitve spredaj</td>
</tr>
<tr>
<td>DPVA</td>
<td>Senzor upočasnitve spredaj</td>
</tr>
<tr>
<td>DPR</td>
<td>Senzor prisotnosti zadaj (novi)</td>
</tr>
<tr>
<td>DDPR</td>
<td>Senzor prekoračitve zadaj</td>
</tr>
<tr>
<td>DPVR</td>
<td>Senzor upočasnitve zadaj</td>
</tr>
<tr>
<td>A0DDPR1</td>
<td>Senzor prekoračitve spredaj na E7</td>
</tr>
<tr>
<td>DFMO</td>
<td>Senzor za zgornji položaj</td>
</tr>
<tr>
<td>FSM</td>
<td>Končno stikalo zgornjega položaja</td>
</tr>
<tr>
<td>DPVMO</td>
<td>Senzor upočasnitve zgoraj</td>
</tr>
<tr>
<td>DFDE</td>
<td>Senzor za spodnji položaj</td>
</tr>
<tr>
<td>FCSD</td>
<td>Končno stikalo spodnjega položaja</td>
</tr>
<tr>
<td>DPVDE</td>
<td>Senzor upočasnitve spodaj</td>
</tr>
<tr>
<td>DRCG</td>
<td>Senzor levega jermena</td>
</tr>
<tr>
<td>DRCD</td>
<td>Senzor desnega jermena</td>
</tr>
<tr>
<td>FCOMRG</td>
<td>Senzor levega vzdrževalnega zaklopa</td>
</tr>
<tr>
<td>FCOMRD</td>
<td>Senzor desnega vzdrževalnega zaklopa</td>
</tr>
<tr>
<td>SPA</td>
<td>Servisna plošča</td>
</tr>
<tr>
<td>LC</td>
<td>Svetlobna zavesa</td>
</tr>
<tr>
<td>E-STOP</td>
<td>Gumb za vstavitev v sili</td>
</tr>
<tr>
<td>VAR</td>
<td>Variator</td>
</tr>
<tr>
<td>MOP</td>
<td>Glavni operaterski pult</td>
</tr>
<tr>
<td>ROP</td>
<td>Oddaljeni operaterski pult</td>
</tr>
<tr>
<td>SOP</td>
<td>Podoperaterski pult</td>
</tr>
<tr>
<td>PUOP</td>
<td>Vzdrževalni operaterski pult</td>
</tr>
<tr>
<td>CW</td>
<td>Prehod</td>
</tr>
<tr>
<td>DFTG</td>
<td>Senzor leve pozicije</td>
</tr>
<tr>
<td>Symbol</td>
<td>Slovene Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>DPVTG</td>
<td>Senzor upočasnitve levo</td>
</tr>
<tr>
<td>DFTD</td>
<td>Senzor desne pozicije</td>
</tr>
<tr>
<td>DPVTD</td>
<td>Senzor upočasnitve desno</td>
</tr>
<tr>
<td>RFID</td>
<td>Radiofrekvenčna identifikacija</td>
</tr>
<tr>
<td>PLC</td>
<td>Programabilni logični krmilnik</td>
</tr>
</tbody>
</table>
Povzetek

Diplomska naloga opisuje projekt za nadgradnjo transportne linije, imenovane MN2, v podjetju, ki se ukvarja s proizvodnjo avtomobilov. Za avtomatizacijo linije je bilo zadolženo podjetje INEA d.o.o.

Zahteva za nadgradnjo transportne linije MN2 je prišla zaradi potrebe po povečanju proizvodnje, kar zahteva boljšo in hitrejšo pretočnost le-te in možnost servisiranja ter odpravljanja napak na sance, ki se uporabljajo za transport avtomobilov po proizvodni liniji. Za nadgradnjo sta se uporabili coni 1 in 3, saj sta imeli največ prostora za dodatne mize. V coni 1 se je postavil zalogovnik, sestavljen iz dvižne mize A0 in 12-ih valčnih miz, ki so se postavile nad že obstoječimi. V coni 3 pa se je postavilo servisno območje, sestavljeno iz pomične mize C2 in dveh dodatnih valčnih miz, postavljenih vzporedno z že obstoječo linijo. Celotna nadgradnja linije je zajemala tudi implementacijo ustreznega vođenja, nadzora in zagotavljanje ustrezeno varnosti.

V diplomskem delu so opisani uporabljeni strojni elementi, nadgradnja programa v okolju Step7 in razširitev okolja ODiL.

Ključne besede: transportna linija, zalogovnik, servisna cona, Step7, ODiL
Abstract

The diploma thesis describes a project of upgrading a transport line, called MN2, in a car manufacturing company. Automation of the line was performed by INEA d.o.o.

A request for a transport line upgrade was made due to the need of increased production, which requires better and faster product flow and the possibility of servicing and eliminating faults on the sleds, used for car transport through the production line. The upgrades were made in zones 1 and 3, as they had the most room for extra stations. In zone 1, a storage unit, consisting of 12 roller tables, which were set above the existing ones, was installed, as well as a lifting table A0. In Zone 3, a service area consisting of two additional roller tables, set in parallel with the already existing line and the sliding table C2, has been placed. In the scope of this project, proper control and supervision algorithms were implemented, together with all the necessary safety measures.

The bachelor's degree describes the hardware elements used, the upgrade of the program in STEP7 environment and the expansion of the ODiL environment.

Key words: transport line, storage unit, service area, Step7, ODiL
1 Uvod

Projekt, ki ga opisuje diplomska naloga, je bil naročen s strani podjetja, ki se ukvarja z izdelavo avtomobilov, v katerem se izvajajo konstantne dogradnje in nadgradnje proizvodnih linij. Ko se povečajo povpraševanja po produktih, se podjetje trudi tem povpraševanjem ustreči, kar pomeni, da investira v nove linije za dosego teh ciljev ali pa nadgradnjo obstoječih. Nadgradnjo večinoma predstavlja avtomatizacija linij in procesov, ki jih podjetje izvaja. Z avtomatizacijo podjetje pridobi predvsem hitrejše izvajanje procesov in izgradnjo produktov kot tudi natančnejše delo, saj s tem občutno zmanjša ali se celo znebi vpliva človeških napak. Tipično proizvodno linijo prikazuje Slika 1.1.

Slika 1.1: Proizvodna linija v karosernici
Proizvodnja avtomobilov je razdeljenja na štiri večje oddelke: departma za preoblikovanje pločevine, departma za sestavo in varjenje karoserij, departma lakirnice in departma montaže. V tem projektu smo nadgradili transportno linijo MN2, ki se nahaja v departmaju za sestavo in varjenje karoserij. Potreba za nadgradnjo se je pojavila zaradi izdelave novega avtomobila in posledično večjih naročil. Sklop linij tega departmaja ni zagotavljal dovolj velike pretočnosti, saj je na linijah velikokrat prihajalo do različnih zaustavitev, ki so bile posledica, bodisi človeških bodisi strojnih napak, zaradi česar so nastali zastoji tudi na vseh dotičnih linijah. Da bi lahko departma dosegal novo določeno normo, je bilo potrebno odpraviti zastoje oziroma jih vsaj minimalizirati. Ker ni bilo prostora, da bi linijo preprosto povečali, se je naročnik namesto za proizvodno linijo (Slika 1.1) odločil nadgraditi transportno linijo MN2.

Rešitev za odpravljanje zastojev sta predstavljali izgradnji zalogovnika in servisne cone na liniji MN2. Tako je povratna linija nekoliko rabremenila proizvodno linijo, saj se je razširila za 12 dodatnih miz za sani, s katerimi lahko razpolaga, s čimer uravnava pretočnost linije. Poleg tega sta bili nameščeni še dve novi mizi, ki sta namenjeni servisiranju pokvarjenih sani, kar pomeni, da vsaj 2 pokvarjeni sani ne prideta na proizvodno linijo, skozi katero bi sicer zaradi svoje okvare potovali brez naložene karoserije in seveda delali izgubo. S tem se je rešil še en problem zastojev, saj za servis sani ni več potrebno ustaviti linije, saj lahko sedaj serviserji sani popravljajo na servisnih mizah.
2 Opis sistema

V karosernici delavci sestavljajo različne kose avtomobila, ki se na avtomatizirani proizvodni liniji sestavijo skupaj. Karoserija je naložena na saneh, ki se premikajo po valičnih mizah po proizvodnji, roboti, ki so nameščeni okoli miz, pa pritrdijo nove kose na karoserijo. Predno pridejo sani na transportno linijo, robot vzame karoserijo avtomobila in jo prestavi na druge sani, ki nadaljujejo pot v lakirnico.

Transportna linija predstavlja povratno linijo za sani na začetek proizvodnje in je sestavljena iz linij MN1 in MN2, nahaja pa se na podestu. To ne predstavlja problema dostopnosti, saj je ta del linije v celoti avtomatiziran. Operater se mora povzpeti na podest samo v primeru napak ali servisa, kar pa ni pogosto, saj le-ta deluje po dokaj preprosti logiki, z izjemo nekaterih odsekov.

Linija MN2 (Slika 2.1), ki je bila predmet nadgradnje, saj je bilo na njej največ prostora, je sestavljena iz štirih con. Gre za linijo, ki dobi prazne sani iz linije MN1 in jih pripelje nazaj na začetek karosernice, kjer se na njih zopet nasadi karoserija avtomobila in se pošlje v obdelavo.
2.1 Naročnikove zahteve

Potreba po nadgradnji je prišla zaradi novih in večjih naročil avtomobilov, ki jih linija v obstoječem stanju ni zmogla proizvesti. Največji problem so predstavljali zastoji linije, saj je proizvodnja velika. V primeru, da je na liniji prišlo do zastoja bodisi zaradi strojne ali človeške napake ali zaradi katerega koli drugega razloga, se je ustavila celotna proizvodna linija.

Cilj projekta je bil ta problem odpraviti, in sicer z nadgradnjo linije, da bi proizvodnja potekala čim hitreje, nemoteno in brez zastojev. Da bi to dosegli, smo morali omogočiti tudi, da servisiranje poškodovanih sani ne bi potekalo na liniji in s tem zaustavljalo proizvodnjo.

2.2 Naprave

Za optimizacijo linije smo v cono 1 dodali zalogovnik, sestavljen iz 12-ih miz, ki skrbi, da na liniji ne pride do zastoja ali do pomanjkanja sani. Če se proizvodnja za zalogovnikom ustavi, se zalogovnik napolni s sanmi, ki še vedno prihajajo od zadaj. Če se ustavi proizvodnja pred zalogovnikom in le-ta ne dobiva sani, se začne zalogovnik prazniti, tako da naprej pošilja sani, ki jih ima na zalogi. S tem smo rešili oziroma vsaj zmanjšali zastoje na liniji.
V cono 3 smo dodali dve mizi, ki sta namenjeni za servisiranje in do katerih sani dostopajo preko mize C2, ki smo jo nadomestili s pomično mizo. Ta miza ima senzor RFID, ki bere in zapisuje na oddajnike RFID, ki so nameščeni na vseh sanih, s čimer izloči sani, ki so potrebne popravila, hkrati pa tudi označi tiste, ki so bile popravljene.

Na liniji MN2 ima vsaka cona svojo elektro omaro, v njej lasten krmilnik in svojo nadzorno ploščo. Za naš projekt smo nadgradili program v coni 1 in coni 3. V coni 3 se nahaja MOP (glavna nadzorna plošča), prek katere lahko dostopamo do vseh con na liniji, iz njih beremo podatke in upravljamo z vsemi elementi na liniji. V coni 1 se nahaja ROP (oddaljena nadzorna plošča), prek katere lahko beremo podatke celotne linije in upravljamo elemente cone 1. Na Sliki 2.2 je prikazana shema linije MN2, ki prikazuje postavitev njenih elementov, elektro omar in nadzornih plošč.

Slika 2.2: Shema transportne linije

2.2.1 Mize

Za naš projekt smo uporabili tri vrste miz – valjčno, dvižno in pomično. Vse mize imajo servomotorje, zato jih je mogoče kmoriti z nastavljanjem parametrov. Valjčne mize imajo samo en servomotor, saj imajo smer vrtjenja valjčkov samo naprej in nazaj. Dvižna miza A0 in pomična miza C2 imata po dva servomotorja, enega za
pomikanje valjčkov naprej in nazaj, drugega pa za premik celotne mize, bodisi navzgor/navzdol ali pa levo/desno.

Slika 2.3: Poimenovanje miz

Vse mize imajo tudi svoja imena (Slika 2.3), ki so sestavljena iz imena linije, cone, v kateri se nahajajo, in primerne črke glede na cono ter zaporedne številke mize.

1) Valjčna miza

2.2 Naprave

- **Valjčna miza A12**
 - Delovanje
 Miza A12, ki je prikazana na Sliki 2.5, je prva mize zalogovnika in se nahaja nad mizo A1. Ima možnost pošiljanja sani naprej ali nazaj. Ko pride na liniji do nasičenja, miza A12 prejme prazne sani z mize A0 in jih pošlje naprej na mizo A13. Ko pride na liniji do pomanjkanja, miza A12 prejme sani z mize A13 in jih pošlje na A0. A12 je namenjena za hitro sprejemanje sani, kar pomeni, da obdrži sani samo v primeru, ko so vse mize od A13 do A23 zasedene in funkcija pomanjkanja ni aktivna.
 - Senzorji in motorji
 - MR (servomotor 0,55 kW, 2 smeri, ena hitrost),
 - DPA (senzor prisotnosti spredaj),
 - DPR (senzor prisotnosti zadaj) in
 - DDPR (senzor prekoračitve zadaj).
• Nadzor in indikacija

HMI: Siemens Scube Z1ROP1.

➢ *Valjčne mize A13–A23*

• Delovanje

• Senzorji in motorji

- MR (servomotor 0,55 kW, 2 smeri, ena hitrost),
- DPA (senzor prisotnosti spredaj) in
- DPR (senzor prisotnosti zadaj).

Slika 2.6: Valjčne mize A13–A22
2.2 Naprave

- Nadzor in indikacija

HMI: Siemens Scube Z1ROP1.

- **Valjčni mizi C8 in C9**

 - Delovanje

Min C8 in C9, ki jih prikazujeta Slike 2.8 in 2.9, sta valjčni mizi, ki sta višji od ostalih, s čimer operaterju omogočata lažje delo med popravljanjem sani. Uporablja se ju za servis, sani pa prejmeta preko prenosnice C2. Na koncu miz je zaradi varnosti mehanska zapora. Valjčki se vrtijo naprej in nazaj. Ob mizah se nahajata operaterska pulta, na katerih operater, ko zaključi z delom, določi, ali so sani popravljene ali ne.

 - Senzorji in motorji

Miza C8
- MR (servomotor 0,55 kW, 2 smeri, ena hitrost),
- DPA (senzor prisotnosti spredaj) in
- DDPA (senzor prekoračitve spredaj).

Miza C9
- MR (servomotor 0,55 kW, 2 smeri, ena hitrost),
- DPA (senzor prisotnosti spredaj) in
- DDPR (senzor prekoračitve zadaj).
Opis sistema

Slika 2.9: Valična miza C9

- Nadzor in indikacija

 HMI: Siemens Scube Z3SOP.

2) Dvižna miza A0

- Delovanje

Miza A0 lahko prejme sani z miz E7 ali A12, odda pa jih lahko mizama A1 ali A12. Valičke lahko vrti naprej in nazaj ter se s spodnjega nivoja (nivo 0) dvigne na zgornji nivo (nivo 1) in obratno. Deluje lahko v treh režimih.
2.2 Naprave

V normalnem režimu prejme san i z mize E7, ki je zadnja miza linije MN1, in jih odda naprej na mizo A1.

V režimu nasičenja prejme san i z mize E7, se dvigne na nivo 1 in jih odda na mizo A12, ki je prva miza zalogovnika, ter se vrne nazaj na nivo 0.

V režimu pomanjkanja se dvigne na nivo 1, vzame san i z mize A12, se spusti na nivo 0 in jih odda na mizo A1.

- Senzorji in motorji:
 - MR (servomotor 0,55 kW, 2 smeri, dve hitrosti),
 - ML (servomotor 4 kW, 2 smeri, dve hitrosti),
 - DPA (senzor prisotnosti spredaj),
 - DDPA (senzor prekoračitve spredaj),
 - DPVA (senzor upočasnitve spredaj),
 - DPR (senzor prisotnosti zadaj),
 - DDPR (senzor prekoračitve zadaj),
 - DDPR1 (senzor prekoračitve spredaj na E7),
 - DPVR (senzor upočasnitve zadaj),
 - DPVMO (senzor upočasnitve zgoraj),
 - DPVDE (senzor upočasnitve spodaj),
 - DFMO (senzor za zgornji položaj),
 - DFDE (senzor za spodnji položaj),
 - DRCG (senzor levega jermena),
 - DRCD (senzor desnega jermena),
 - FCSM (končno stikalo zgornjega položaja),
 - FCSD (končno stikalo spodnjega položaja),
 - FCOMRG (senzor levega vzdrževalnega zaklopa) in
 - FCOMRD (senzor desnega vzdrževalnega zaklopa).
• Nadzor in indikacija

HMI: Siemens Scube Z1ROP1.

3) Pomčna miza C2

Za prepoznavanje sani na mizi smo uporabili senzor RFID. S tem določimo, ali gredo sani v servis ali naprej po liniji. Prav tako na servisirane sani zapišemo, ali so uspešno popravljene ali ne. Ali so sani potrebne popravila določijo bodisi robotske mize bodisi operater prek vzdrževalnega zaslona (Slika 2.11). To stori tako, da v polje ŠTEVILKA SANKE IZHOD vnese številko sani in pritisne gumb POTRDITEV. Z gumbom PREKLIC lahko ukaz prekine.
2.2 Naprave

- Delovanje

Miza C2 lahko prejme sani z miz C1, C8 ali C9, odda pa jih lahko na mize C3, C8 in C9. Valjčke lahko vrti naprej in nazaj ter se z desne pozicije premakne na levo in obratno. Vsakič, ko pridejo sani na mizo, s senzorjem RFID prebere podatke in se odloči, kam jih poslati.

Odločitev 1: Če dobi sani z mize C1 in so podatki v redu, jih pošlje naprej na mizo C3.

Odločitev 2: Če dobi sani z mize C1 in iz podatkov razbere, da je potreben servis, se premakne na levi položaj in jih pošlje na mizo C8. V primeru, da je miza C8 zasedena, jih pošlje na mizo C9 in se vrne na desni položaj. Če sta obe mizi (C8 in C9) zasedeni, zapiše na sani ukaz, da se miza izloči in poskrbi za naslednji servisni con, in pošlje mizo naprej na C3.

Odločitev 3: Ko dobi zahtevo s servisnih pulnov miz C8 ali C9, se, ko je prazna, premakne na levi položaj in sprejme sani s tiste mize, s katere je dobila zahtevo. Na senzor sani prek RFID zapiše podatek, ki ga je dobila s servisnega pulta, torej ali so sani popravljene ali ne. Nato se vrne na desno pozicijo in pošlje sani naprej na mizo C3.

- Senzorji in motorji
 - MR (servomotor 0,55 kW, 2 smeri, dve hitrosti),

Slika 2.11: HMI zahteva za izhod sani
- MT (servomotor 3 kW, 2 smeri, dve hitrosti),
- DPA (senzor prisotnosti spredaj),
- DDPA (senzor prekoračitve spredaj),
- DPVA (senzor upočasnitve spredaj),
- DPR (senzor prisotnosti zadaj),
- DDPR (senzor prekoračitve zadaj),
- DPVTG (senzor upočasnitve levo),
- DPVTD (senzor upočasnitve desno),
- DFTG (senzor za levi položaj),
- DFTD (senzor za desni položaj) in
- RFID (senzor radio-frekvenčne indentifikacije).

Slika 2.12: Pomična miza C2

- Nadzor in indikacija

HMI: Siemens Scube Z3SOP.

2.2.2 Prehod

Pult za prehod, ki ga prikazuje Slika 2.13, se uporablja na mestih, kjer operater ne more obhoditi transportne linije ali pa bi moral opraviti predolgo pot naokoli. Prehod sestavljata dva pulta, ki sta postavljena na vsaki strani linije in omogočata
2.2 Naprave

Slika 2.13: Pult za prehod

Ko operater pritisne zeleno tipko, se funkcije, ki preprečujejo prehod, a trenutno potekajo, izvedejo do konca, nato pa se prehod dovoli. Ko operater prečka linijo, mora pritisniti tipko za potrditev prehoda, s čimer resetira zahtevo za prehod in dovoljuje nadaljnje izvajane funkcij vezanih na prehod.

Semafor lahko sveti v treh kombinacijah:

- kadar sveti samo zelena luč, je prehod dovoljen (Slika 2.14 desno),
- kadar sveti samo rdeča luč, prehod ni dovoljen (Slika 2.14 levo),
- kadar sveti rdeča luč in zelena utripa, je zahteva za prehod sprejeta in bo prehod dovoljen, ko se premiki nehajo izvajati (Slika 2.15).
Slika 2.14: Dovolen/nedovolen prehod

Slika 2.15: Zahtevan, a nedovolen prehod
V našem primeru smo v coni 1 obstoječi prehod, ki je bil med mizama A0 in A1, premaknili med mizi E7 in A0, saj je tam potreben, ker omogoča dostop do vhoda v varnostno območje mize A0 in njenih variatorjev. V coni 3 smo dodali 2 prehoda, in sicer enega med mizama C0 in C1, drugega pa med mizama C3 in C4. Tam sta potrebna, da lahko operater dostopa do miz C8 in C9, na katerih se nahajajo sani, ki so potrebne servisa.

2.2.3 Vzdrževalni operaterski pult

Slika 2.16 prikazuje vzdrževalni operaterski pult, ki se uporablja za popravila sani.
Pult je opremljen z gumbom za zaustavitev v sili v nujnih primerih. Poleg tega ima pult stikalo V DELOVANJU, ki je vezano direktno na motor mize. To pomeni, da je v primeru stikala v položaju 1, motor mize zablokiran in ne deluje. Pult ima tudi dva manjša gumba z belimi lučmi, večji črni gumb za potrjevanje dela operaterja ter semafor z rdečo in zeleno lučjo za indikacijo razpoložljivosti dela. Rdeča luč semaforja pomeni, da operater ne sme opravljati servisa, zelena pa, da ga lahko opravljva.

Dodali smo 2 vzdrževalna operatorska pulta, ki se nahajata v coni 3 zraven servisnih miz C8 in C9. Operater z njuno pomočjo določi stanje sani. Kadar so na mizi sani in operater opravlja svoje delo, mora imeti stikalo s ključem (V DELOVANJU) vedno izbran položaj 1, v ostalih primerih se le-tega pusti v položaju 0.

Popravljanje sani:

- Kadar so poškodovane sani prisotne na mizi, stikalo s ključem (V DELOVANJU) postavimo v položaj 1 in opravljamo popravilo.
- Ko so sani popravljene, pritisnemo tipko POPRAVLJENO. Lučka v tipki takrat gori neprekinjeno.
- Če sani niso popravljene, pritisnemo tipko NI POPRAVLJENO. Lučka v tipki takrat gori neprekinjeno.
- Izbiro tipke potrdimo, ko pritisnemo tipko KONEC DELA.
- Da pošljemo sani nazaj na linijo, moramo imeti najprej potrjeno izbiro na pultu, nato pa obrnemo stikalo V DELOVANJU na 0.

V primeru motenj delovanja pritisnemo rdečo tipko STOP V SILI. Ponoven zagon zahteva sprostitev tipke in pritisk tipke VKLOP CIKLA na Z3MOP1.

2.2.4 Servisna plošča dostopa

Servisna plošča se uporablja na vratih varnostnih območij, kjer je tveganje za poškodbe delavca povečano. Na Sliki 2.17 je prikazan primer servisne plošča. Sestavljajo jo kljuka (levo zgoraj), dvopoložajna ključavnica (desno zgoraj), dvopoložajno varnostno stikalo (desno spodaj) in dva osvetljena gumba, eden za zaustavitev cikla (spodaj) in drug za delovanje cikla (zgoraj).
Za vstop in izstop iz varnostnega območja je potrebno izvesti pravilno zaporedje ukazov. Le-tega lahko izvede le pooblaščena oseba za zaustavitev opreme oziroma linije, ki prva vstopi v varovano območje po opisanem postopku. Postopek vstopa je naslednji:

1. Pritisni gumb ZAUSTAVITEV CIKLA.
2. Lučka DELOVANJE CIKLA utripa, kar pomeni, da je potrebno počakati, da se dokončajo vsi premiki, ki so v teku znotraj varovanega območja.
3. a) Za operacije čiščenja ali vzdrževanja

Slika 2.17: Servisna plošča dostopa mize A0
Premakni stikalo VARNOSTI v položaj ZAUSTAVITEV.
Prekine se dovod energije, s čimer se končajo premiki opreme v območju.
Namesti KLJUČAVNICO na VARNOSTNO STIKALO v izklopljenem položaju.
Če se intervencije opravljajo na medijih (zrak, hidravlika), je potrebno razbremeniti sistem in ga zavarovati pred nehotenim vklopom (namestitev dodatnih ključavic).

b) Za operacije nastavljanja, ko je potrebna energija
Pusti stikalo VARNOSTI v položaju DELOVANJE.
Preklopi stikalo VARNOSTNA VRATA v položaj »odprta ključavnica« (prioriteto je, da se operacije izvaja izven cone oziroma, da vstopi v cono le minimalno potrebno število oseb).

5. IZVEDBA INTERVENCIJE v skladu z navodili in osnovnimi pravili varnosti.

PONOVDNI ZAGON
Oseba, ki je opravila zaustavitev opreme oziroma linije, zadnja zapusti območje in izvede ponovni zagon opreme po naslednjem postopku:

6. Preveri, da se nihče ne nahaja znotraj področja.
7. Odstrani svojo ključavnico, ki je ostala zadnja, in zapri vrata.
8. Preklopi stikalo VARNOSTI na DELOVANJE (če že ni).
10. Pritisni gumb DELOVANJE CIKLA.

Kakršenkoli napačen premik lahko ogrozi varnost celotnega območja, kar pomeni izpad napetosti in s tem prenehanje delovanja vseh naprav. V takšnem primeru
2.2 Naprave

je potrebno na MOP-u, ROP-u ali SOP-u resetirati napako in pravilno izvesti sekvenco na servisni plošči za odklepanje ali zaklepanje.

Za naš projekt smo uporabili 2 servisni plošči dostopa, in sicer v coni 1 na območju mize A0 in v coni 3 na območju mize C2.

2.2.5 Svetlobna zavesa

Slika 2.18 prikazuje delovanje svetlobne zaves SICK.

Svetlobne zaves so namenjene zaznavanju vstopa v varnostna območja, s čimer se prepreči nezavarovane in nevarne posege vanje. Ob prekinitvi zavese namreč pade varnost območja, pri čemer vse naprave v varnostnem območju nemudoma prenehajo z delovanjem. Preverili svetlobne zavesi najdemo optimo, vendar se zvake napake na kontrolnem panelu resetirati. Zavesa je sestavljena iz oddajnika na eni in sprejemnika na drugi strani. Delovanje zaves na zavezujo LED diode, ki se nahajajo na notranji strani zaves. Da je zavesa pravilno postavljena,

Zavese so povezane na krmilnik, da lahko z njimi upravlja program, v katerem določimo, da prekinitev zaves povzroči izpad varnosti, med pravilnim tranzitom sani mimo zaves pa jih programsko izklopimo.

Za naš projekt smo uporabili 6 svetlobnih zaves. Dve v coni 1, in sicer v varnostnem območju mize A0. Prva je nameščena med prehodom sani z mize E7 na mizo A0, druga pa med prehodom sani z mize A0 na mizi A1 in A12. Ostale štiri zavese smo uporabili v coni 3, za varnostno območje mize C2. Prva je nameščena med prehodom sani z mize C1 na C2, druga med mizama C2 in C3, tretja med mizama C2 in C8 ter četvrt a med mizama C2 in C9.

Slika 2.19 prikazuje svetlobne zavese SICK, ki so bile uporabljene.
2.2 Naprave

2.2.6 Senzorji

1) Induktivni senzorji Senstronik

Induktivni senzorji Senstronik brez stika zaznajajo prisotnost kovinskih predmetov. Elektromagnetno polje, ki ga ustvarjajo, je oslabljeno zaradi bližine kovinske tarče, s čimer se sproži sprememba stanja na izhodu senzorja. Na zaznavni strani senzorja feritovo jedro koncentrira visoko frekvenčno elektromagnetno polje, ki ga ustvari tuljava z nihanjem LC kroga.

Kadar kovinski predmet vstopi v to polje, se v njem inducirajo tokovi, ki črpajo energijo iz oscilatorja, in povzročijo zmanjšanje amplitude nihanj.

Zgradbo senzorja prikazuje Slika 2.20, sestoji pa iz t. i. Schmittovega prožilnika, ki v fazi oblikovanja signala ocenjuje amplitudo signala, ki ga daje oscilator. Glede na izmerjeno slabljenje napetosti sproži spremembe v stanju njegovega izhoda, ki nadzira izhodno fazo senzorja.

Slika 2.20: Zgradba senzorja Senstronik

Uporabljamo jih za prisotnost delov, pozicioniranje, nadzor rotacije, štetje itd.

Njihove prednosti so, da jih lahko uporabljamo v umazanem okolju, trpežni so proti udarcem, visokemu pritisku in elektromagnetnim motnjam. Induktivni senzor Senstronik prikazuje Slika 2.21.
Vsi senzorji imajo zelene in rumene LED diode. Zelena sveti, ko ima senzor napajanje, rumena pa prikazuje prisotnost. Montirali smo jih ob notranjem daljšem robu miz na višini, na kateri lahko zaznajo prisotnost.

- DDPR (na začetku mize),
- DPR (na 1/4 mize),
- DPVR (na 1/3 mize),
- DPVA (na 2/3 mize),
- DPA (na 3/4 mize) in
- DDPA (na koncu mize).

Če je kateri od senzorjev DPA ali DPR pokrit, pomeni, da so sani prisotne na mizi. Če je kateri od senzorjev DDPA in DDPR pokrit, pomeni, da so se sani nepravilno ustavile na mizi, bodisi preveč nazaj ali preveč naprej. Ko sani dosežejo kateregakoli senzorjev DPVA ali DPVR, se hitrost valjčkov upočasni. Hitrost zmanjšamo, da se sani lažje in natančneje ustavijo, kjer to želimo.
2) **Induktivni senzorji PEPPERL+FUCHS**

Induktivne senzorje PEPPERL+FUCHS smo uporabili pri dvigovanju mize A0, pri njenih varnostnih zaklopih in pri jermenu. Dva senzorja pozicije in dva senzorja upočasnitve, ki smo jih uporabili za dvig, smo montirali na primerne višine na ogrodju mize A0, senzorja jermena smo montirali zraven jermenov, senzorja varnostnih zaklopov pa v luknjah, kamor se namestita varnostna zaklopa. Slika 2.22 prikazuje omenjene senzorje.

![Slika 2.22: PEPPERL+FUCHS senzorji](image)

Na mizi C2 smo te senzorje uporabili za premikanje mize levo in desno ter za premikanje njenega jermen. Za premik smo jih montirali na notranji, daljši rob mize, obrnjene navzdol. Pod mizo se nahaja lesena plošča, na katero smo nalepili kovinske trakove in jih odrezali na primerne dolžine za zaznavo. Tu smo uporabili dva senzorja za upočasnitev in dva za določanje pravilnega položaja mize. Senzor za jermen smo montirali na kovinsko ploščico, ki se premakne, če jermen poči.

3) **Senzorji RFID**

Radiofrekvenčna identifikacija (ang. Radio Frequency IDentification – RFID) je tehnologija za prenos podatkov med bralnikom in elektronsko oznako v namen identifikacije. Oznaka je sestavljena iz integriranega vezja (čipa), ki hrani in procesira podatke ter izvaja modulacijo in demodulacijo signalov. Drugi del oddajnika je antena,
ki sprejema in oddaja radijske signale. Signale oddajnikov RFID sprejema bralnik RFID, kar omogoča identifikacijo predmetov oziroma bitij, na katere je oddajnik pritrjen. Identifikacijska tehnologija RFID naj bi postopoma izpodrinila črtne kode.

V coni 3 na pomični mizi C2 smo za branje in zapisovanje podatkov na sani uporabili SIEMENS-ov senzor RFID SIMATIC RF340R (Slika 2.23).

![Slika 2.23: SIMATIC RF340](image)

Krmilnik preko komunikacijskega modula RF180C (Slika 2.24) komunicira s senzorjem in se odloča, kaj storiti s sanmi in kaj zapisati nanje.

![Slika 2.24: Komunikacijski modul RF180C](image)
Komunikacijski modul RF180C je modul, ki ga lahko uporabljamo na katerem koli krmilniku za upravljanje komponent RFID prek protokola PROFINET IO. Na njem lahko hkrati delujeta do dva bralnika. RF180C lahko ukaz hkrati pošlje dvema bralcema (FB 45/FB 55 ali standardni profil RFID, ko deluje na SIMATIC S7). Do podatkov o odzivnikih lahko dostopamo s fizičnim naslavljanjem odzivnika. V okolju SIMATIC S7 je v ta namen na voljo standardni profil FB 45/FB 55 ali RFID.

2.2.7 Operaterski pulti

Glavni operaterski pult Z3MOP1 se nahaja na podestu v coni 3 linije MN2. Samo tukaj lahko operater nadzira in hkrati upravlja s celotno linijo. Oddaljen operaterski pult Z1ROP1 pa se nahaja v coni 1 in lahko nadzira celotno linijo, upravlja pa lahko samo cono 1.

Slika 2.25: Glavni/oddaljeni operaterski pult

Glede na Sliko 2.25 sta pulta sestavljena iz naslednjih delov:
1. panela HMI z dodatnimi gumbi,
2. predala za tipkovnico in miško,
3. elektro omare in
4. podstavka elektro omare.
Poleg zaslona HMI imata oba pulta gumbe za stop v sili, resetiranje napak, ponovni vklop, vklop cikla, stikalo za ročni/avtomatski režim ter gumba naprej in nazaj. Zraven je tudi vhod USB.

Pult Z3MOP1 je preko Etherneta povezan z ostalimi operaterskimi pulti Z4SOP1, Z2SOP1 in Z1ROP1, kot prikazuje Slika 2.26.

Slika 2.26: Mreža Ethernet

V elektro omari glavnega operaterskega pulta se nahajajo krmilnik SIMATIC S7-300 CPU319F, komunikacijski procesor CP LEAN RSX1N, industrijski PC SIMATIC Box PC 627, povezovalnik PN/PN in upravljalno stikalo IE (industrial ethernet) SCALANCE X216.

Slika 2.27: Elektro omara Z3MOP1

Slika 2.28: Podoperaterski pult
3 PLC program

Programsko kodo smo dopolnili v že obstoječih programih, ki so napisani v programskem okolju Step7, saj so za projekt uporabljeni Siemensovi krmilniki.

Slika 3.1: Step7 – Glavni zaslon

Step7 je programska oprema za programiranje programljivih logičnih krmilnikov (PLK) družine SIMATIC S7 podjetja Siemens AG in je naslednica Step5 za krmilnike SIMATIC S5. Zaradi razširjene uporabe krmilnikov SIMATIC (krmilnikov PLK in PC-jev) je Step7 v svetu postal kvazi standard in tekmuje z
3.1 Konfiguracija sistema

Obstoječim napravam transportne linije 2, ki so:
- ET200S postaja za kontrolo distribucije 24 V enosmerne električne energije,
- štiri elektro omare (v vsaki coni ena),
- 1 glavni operaterski pult (MOP), ki se nahaja v coni 3,
- 2 podoperaterska pulta (SOP), ki se nahajata v conah 2 in 4,
- 1 oddaljeni operaterski pult (ROP), ki se nahaja v coni 1,
- 2 enoosni pogonski škatli G120D (1,5 kW) za obračalne mize B10 in C6,
- 1 enoosna pogonska škatla G120D (1,5 kW) za pomično mizo D2,
- 1 enoosna pogonska škatla G120D (7,5 kW) za dvižno mizo B0,
- 1 enoosna pogonska plošča G120 (11 kW) za dvigalo D1,
- 3 servisne plošči dostopa (SPA) za:
 - Z2SPA1 z dvižno mizo B0,
 - Z3SPA1 z robotsko mizo C7,
 - Z4SPA1 z dvigalom D1,
- 1 enoosna pogonska škatla G120D (4,0 kW) za robotsko mizo C7,
- 1 enoosna pogonska škatla G120D (1,5 kW) za mizo D11,
- 1 enoosna pogonska škatla G120D (4,0 kW) za mizo D3,
- 1 električna ključavnica na vratih za dostop do mize D11,
- 1 RFID na mizi D11,
- 1 RFID na mizi D3,
- 1 RFID na robotski mizi C7,
smo za ta projekt dodali:

- 1 enoosno pogonsko škatlo G120D (0,75 kW) za pomik pomične mize C2 in 1 enoosno pogonsko škatlo G120D (0,75 kW) za valjčke pomične mize C2,
- 1 enoosno pogonsko škatlo G120D (4 kW) za dvig dvižne mize A0 in 1 enoosno pogonsko škatlo G120D (0,55 kW) za valjčke dvižne mize A0,
- 2 servisni plošči dostopa (SPA) za:
 - Z1SPA1 z dvižno mizo A0,
 - Z3SPA2 s pomično mizo C2,
- 1 RFID na pomično mizo C2.

V strojni konfiguraciji smo mreži profinet (Slika 3.2) za cono 1 dodali dve ET200S postaji A0VAR1-IM in A0VAR2-IM ter servisno ploščo dostopa Z1SPA1, za cono 2 tudi dve ET200S postaji C2VAR1-IM in C2VAR2-IM ter servisno ploščo dostopa Z3SPA2 in komunikacijski modul C2RFID. Postajama Z1ZB-IM in Z3ZB-IM smo dodali module in njim pripadajoče signale.

Slika 3.2: Profinet mreža naprav na liniji MN2
3.2 Cona 1 – zalogovnik

Na ET200S postajo Z1ZB-IM v coni 1 smo štirim obstoječim modulom dodali nekaj signalov, zraven pa še 10 novih modulov, od tega 6 napetostnih vhodnih in 4 tokovne izhode. Dodala sta se tudi dva varitorja A0VAR1 in A0VAR2 ter servisna plošča dostopa Z1SPA1.

Uporabljeni signali za cono 1:

<table>
<thead>
<tr>
<th>Cona 1</th>
<th>Simbol</th>
<th>Naslov</th>
<th>Tip</th>
<th>Komentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M03</td>
<td>DJZ4ZAC</td>
<td>I 102.0</td>
<td>BOOL</td>
<td>(Z1.IM1.M03.00) Z1AD TO Z4ZAC POWER SWITCH</td>
</tr>
<tr>
<td>M04</td>
<td>Z1DJDC1</td>
<td>I 103.4</td>
<td>BOOL</td>
<td>(Z1.IM1.M04.04) ZONE 1 A0VAR COMMON CIRCUIT PROTECTOR</td>
</tr>
<tr>
<td>M13</td>
<td>AVRA0</td>
<td>Q 120.0</td>
<td>BOOL</td>
<td>(Z1.IM1.M13.00) ROLLER TABLE A0 MC ON</td>
</tr>
<tr>
<td>M17</td>
<td>A0 LC11</td>
<td>I 1100.1</td>
<td>BOOL</td>
<td>(Z1.IM1.M17.01) DET. LIFT TABLE A0 LIGHT CURTAIN 1-1</td>
</tr>
<tr>
<td></td>
<td>A0 LC21</td>
<td>I 1100.2</td>
<td>BOOL</td>
<td>(Z1.IM1.M17.02) DET. LIFT TABLE A0 LIGHT CURTAIN 2-1</td>
</tr>
<tr>
<td></td>
<td>A0 LC12</td>
<td>I 1100.5</td>
<td>BOOL</td>
<td>(Z1.IM1.M17.05) DET. LIFT TABLE TABLE A0 LIGHT CURTAIN 1-2</td>
</tr>
<tr>
<td></td>
<td>A0 LC22</td>
<td>I 1100.6</td>
<td>BOOL</td>
<td>(Z1.IM1.M17.06) DET. LIFT TABLE A0 LIGHT CURTAIN 2-2</td>
</tr>
<tr>
<td>M19</td>
<td>DJA12</td>
<td>I 108.0</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.00) ROLLER TABLE A12 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA13</td>
<td>I 108.1</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.01) ROLLER TABLE A13 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA14</td>
<td>I 108.2</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.02) ROLLER TABLE A14 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA15</td>
<td>I 108.3</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.03) ROLLER TABLE A15 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA16</td>
<td>I 108.4</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.04) ROLLER TABLE A16 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA17</td>
<td>I 108.5</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.05) ROLLER TABLE A17 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA18</td>
<td>I 108.6</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.06) ROLLER TABLE A18 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA19</td>
<td>I 108.7</td>
<td>BOOL</td>
<td>(Z1.IM1.M19.07) ROLLER TABLE A19 MCCB</td>
</tr>
<tr>
<td>M20</td>
<td>DJA20</td>
<td>I 109.0</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.00) ROLLER TABLE A20 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA21</td>
<td>I 109.1</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.01) ROLLER TABLE A21 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA22</td>
<td>I 109.2</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.02) ROLLER TABLE A22 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA23</td>
<td>I 109.3</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.03) ROLLER TABLE A23 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJA0VAR</td>
<td>I 109.4</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.04) LIFTING TABLE A0 MCCB</td>
</tr>
<tr>
<td></td>
<td>I109.5</td>
<td>I 109.5</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.05) RESERVE</td>
</tr>
<tr>
<td></td>
<td>Z1DJSPA1</td>
<td>I 109.6</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.06) ZONE1 SPA BOX CIRCUIT PROTECTOR</td>
</tr>
<tr>
<td></td>
<td>Z1DJLC</td>
<td>I 109.7</td>
<td>BOOL</td>
<td>(Z1.IM1.M20.07) ZONE1 LIGHT CURTAIN CIRCUIT PROTECTOR</td>
</tr>
<tr>
<td>M21</td>
<td>A1DDPR</td>
<td>I 110.0</td>
<td>BOOL</td>
<td>(Z1.IM1.M21.00) ROLLER TABLE A1 OVER TRAVEL</td>
</tr>
<tr>
<td></td>
<td>A12DPA</td>
<td>I 110.1</td>
<td>BOOL</td>
<td>(Z1.IM1.M21.01) ROLLER TABLE A12 FRONT PRESENCE</td>
</tr>
<tr>
<td></td>
<td>A12DDPR</td>
<td>I 110.2</td>
<td>BOOL</td>
<td>(Z1.IM1.M21.02) ROLLER TABLE A12 REAR PRESENCE</td>
</tr>
<tr>
<td></td>
<td>A12DDPR</td>
<td>I 110.3</td>
<td>BOOL</td>
<td>(Z1.IM1.M21.03) ROLLER TABLE A12 OVER TRAVEL</td>
</tr>
<tr>
<td>Code</td>
<td>Value</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13DPA</td>
<td>I 110.4</td>
<td>BOOL (Z1.IM1.M21.04) ROLLER TABLE A13 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13DPR</td>
<td>I 110.5</td>
<td>BOOL (Z1.IM1.M21.05) ROLLER TABLE A13 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14DPA</td>
<td>I 110.6</td>
<td>BOOL (Z1.IM1.M21.06) ROLLER TABLE A14 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14DPR</td>
<td>I 110.7</td>
<td>BOOL (Z1.IM1.M21.07) ROLLER TABLE A14 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15DPA</td>
<td>I 111.0</td>
<td>BOOL (Z1.IM1.M22.00) ROLLER TABLE A15 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15DPR</td>
<td>I 111.1</td>
<td>BOOL (Z1.IM1.M22.01) ROLLER TABLE A15 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16DPA</td>
<td>I 111.2</td>
<td>BOOL (Z1.IM1.M22.02) ROLLER TABLE A16 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16DPR</td>
<td>I 111.3</td>
<td>BOOL (Z1.IM1.M22.03) ROLLER TABLE A16 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17DPA</td>
<td>I 111.4</td>
<td>BOOL (Z1.IM1.M22.04) ROLLER TABLE A17 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17DPR</td>
<td>I 111.5</td>
<td>BOOL (Z1.IM1.M22.05) ROLLER TABLE A17 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18DPA</td>
<td>I 111.6</td>
<td>BOOL (Z1.IM1.M22.06) ROLLER TABLE A18 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18DPR</td>
<td>I 111.7</td>
<td>BOOL (Z1.IM1.M22.07) ROLLER TABLE A18 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19DPA</td>
<td>I 112.0</td>
<td>BOOL (Z1.IM1.M23.00) ROLLER TABLE A19 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19DPR</td>
<td>I 112.1</td>
<td>BOOL (Z1.IM1.M23.01) ROLLER TABLE A19 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20DPA</td>
<td>I 112.2</td>
<td>BOOL (Z1.IM1.M23.02) ROLLER TABLE A20 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20DPR</td>
<td>I 112.3</td>
<td>BOOL (Z1.IM1.M23.03) ROLLER TABLE A20 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21DPA</td>
<td>I 112.4</td>
<td>BOOL (Z1.IM1.M23.04) ROLLER TABLE A21 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21DPR</td>
<td>I 112.5</td>
<td>BOOL (Z1.IM1.M23.05) ROLLER TABLE A21 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A22DPA</td>
<td>I 112.6</td>
<td>BOOL (Z1.IM1.M23.06) ROLLER TABLE A22 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A22DPR</td>
<td>I 112.7</td>
<td>BOOL (Z1.IM1.M23.07) ROLLER TABLE A22 REAR PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A23DPA</td>
<td>I 113.0</td>
<td>BOOL (Z1.IM1.M24.00) ROLLER TABLE A23 FRONT PRESENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0DDPR1</td>
<td>I 113.1</td>
<td>BOOL (Z1.IM1.M24.01) ROLLER TABLE A0 REAR OVER TRAVEL ON E7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.2</td>
<td>I 113.2</td>
<td>BOOL (Z1.IM1.M24.02) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.3</td>
<td>I 113.3</td>
<td>BOOL (Z1.IM1.M24.03) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.4</td>
<td>I 113.4</td>
<td>BOOL (Z1.IM1.M24.04) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.5</td>
<td>I 113.5</td>
<td>BOOL (Z1.IM1.M24.05) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.6</td>
<td>I 113.6</td>
<td>BOOL (Z1.IM1.M24.06) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I113.7</td>
<td>I 113.7</td>
<td>BOOL (Z1.IM1.M24.07) RESERVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVRA12</td>
<td>Q 122.0</td>
<td>BOOL (Z1.IM1.M25.00) ROLLER TABLE A12 FORWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRA12</td>
<td>Q 122.1</td>
<td>BOOL (Z1.IM1.M25.01) ROLLER TABLE A12 BACKWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVRA13</td>
<td>Q 122.2</td>
<td>BOOL (Z1.IM1.M25.02) ROLLER TABLE A13 FORWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRA13</td>
<td>Q 122.3</td>
<td>BOOL (Z1.IM1.M25.03) ROLLER TABLE A13 BACKWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVRA14</td>
<td>Q 122.4</td>
<td>BOOL (Z1.IM1.M25.04) ROLLER TABLE A14 FORWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRA14</td>
<td>Q 122.5</td>
<td>BOOL (Z1.IM1.M25.05) ROLLER TABLE A14 BACKWARD MC ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVRA15</td>
<td>Q 122.6</td>
<td>BOOL (Z1.IM1.M25.06) ROLLER TABLE A15 FORWARD MC ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program za ureditev delovanja cone 1, ki sem ga moral dopolniti, obsega funkcjske bloke od FB101 do FB124 in je napisan v lestvični logiki.

V FB101 do FB124 je napisana programska koda za delovanje miz, in sicer tako, da ima vsaka miza svoj funkcjski blok, vsak funkcjski blok pa svoj podatkovni instančni blok, v katerem so zapisane statične spremenljivke mize. Funkcijski blok FB101 sem najbolj spremenil, saj pripada mizi A0, zato ga bom tudi podrobneje opisal.

V funkcjski blok FB102, ki pripada mizi A1, sem dodal logiko za upoštevanje dviga mize A0, bloki od FB103 do FB112 so ostali nespremenjeni. Dodali so se še bloki od
FB113 do FB124 z lastnimi instančnimi podatkovnimi bloki, ki pripadajo novim mizam od A12 do A23.

Z1G je podatkovni blok z globalnimi spremenljivkami za cono 1. Vanj sem dodal globalne spremenljivke za nove mize.

3.2.1 Mapiranje signalov

V tem projektu nismo imeli opravka z analognimi signali, ampak le z digitalnimi. Signali se nikjer v projektu ne uporabljajo neposredno, ampak preko mapiranja v statične spremenljivke, s katerimi se v nadaljevanju operira. Preslikava signala v statično spremenljivko se naredi preko povezave vhodnega PLK naslova (normalno odprt) na statično spremenljivko (izhodo tuljavo). Pri digitalnem izhodu se PLK naslov in statična spremenljivka zamenjata.

Slika 3.3: Mapiran digitalni vhod

3.2.2 Premik mize

Slika 3.4 predstavlja kodo, ki je na začetku vseh funkcionalnih blokov miz, v kateri je v CMP ==I bloku zapisana unikatna številka mize (IN2). Tu se preverja premik mize v ročnem režimu.
3.2 Cona 1 – zalogovnik

Slika 3.4: Številka mize in premik

Najprej se preverja, če je cona v ročnem načinu, nato se z blokom CMP == I preverja, če je operater na HMI-ju izbral enako številko, kot jo ima miza. Če se številka ne ujema, se z uporabo bloka MOVE v začasni naslov za premik (#NUM_MVT) zapiše vrednost -1, če pa se številka ujema, se v naslov #NUM_MVT prepiše številko premika, ki jo je izbral operater na HMI-ju.

V nadaljnjem kodu se naslov #NUM_MVT v bloku CMP == I primerja s številko za premik mize, kar prikazuje Slika 3.5. Ta številka je v konkretnem primeru lahko 1 ali 2. Na valjčnih mizah uporabljamo samo 1 premik, in sicer premik valjčkov, na mizi A0 pa 2 premika, enega za premik valjčkov in drugega za premik dvigala. Na izhod je povezan naslov za ročni premik mize.
Slika 3.5: Ukaz za premik v ročnem režimu

Slika 3.6 prikazuje blok FB1936, ki je obstoječ blok, pripravljen za upravljanje valjčnih miz, v katerem se izvede dejanski premik mize. Izvaja se v vseh funkcijskih blokih miz in v koračnem načinu upravlja z valjčno mizo. Pri tem imajo lahko valjčki 1 ali 2 načina vrtenja in 1 ali 2 hitrosti.

Operacije, ki se izvajajo so naslednje:

- prisotnost mize,
- nadaljnji tranzit do naslednje mize,
- tranzit do prejšnje mize in
- prekoračitev spredaj ali zadaj.

Diagnostika, ki se izvaja je naslednja:

- napake pri sprednjem in zadnjem razkladanju,
- napaka sprednjih senzorjev,
- napaka zadnjih senzorjev,
- napaka prekoračitve spredaj,
- napaka prekoračitve zadaj in
napaka parametrov.

| Slika 3.6: Blok za upravljanje valjčnih miz |

Blok FB1936 uporablja Siemensova podatkovna tipa UDT 1988 LIEN_PUP in UDT 1936 LIEN_TAB. Vhodi in izhodi so naslednji:

- vhoda LTAM (podatki prejšnje mize), LTAV (podatki naslednje mize) in izhod LT (podatki trenutne mize) so formata UDT LIEN_TAB. Izhod LT mora biti naveden v Z*G (* je številka cone), da je lahko izmenjan med mizami.
v vhod COM je informacija iz bloka FB1110, v katerem se preverja varnost cone 1 (da ni generalne napake, odprto servisno območje, pritisnjena tipka E-STOP itd.).

- podatki v funkciji besedi "MF" morajo biti nastavljeni pred blokom FB.
- BAMV in BRMV sta tipki »Naprej« in »Nazaj« na nadzorni plošči.
- SENS: parameter načina vrtenja valjčkov za mizo ima lahko naslednje vrednosti:
 - 0 ali > 3 = napaka parametra,
 - 1 = 1 način,
 - 2 = 2 načina vrtenja valjčkov za raztovarjanje na prejšnjo mizo in
 - 3 = 2 načina vrtenja valjčkov za raztovarjanje na naslednjo mizo.
- VITE: parameter hitrosti vrtenja valjčkov ima lahko naslednje vrednosti:
 - 0 ali nedovoljene vrednosti = napaka parametra,
 - 1 = 1 hitrost naprej,
 - 2 = 2 hitrosti naprej,
 - 5 = 1 hitrost naprej in 1 hitrost nazaj,
 - 6 = 2 hitrosti naprej in 1 hitrost nazaj,
 - 9 = 1 hitrost naprej in 2 hitrosti nazaj in
 - 10 = 2 hitrosti naprej in 2 hitrosti nazaj.
- DEPAS: parameter senzorjev za prekoračitev ima lahko naslednje vrednosti:
 - 0 = napaka parametra,
 - 1 = brez senzorja prehitevanja,
 - 2 = 1 sprednji senzor za prekoračitev,
 - 3 = 1 zadnji senzor za prekoračitev in
 - 4 = 2 senzorja za prekoračitev (sprednji in zadnji).
- T_{ref} je deklariran v data bloku $DB \ T (DB * 98) \ cone *$.
- Vhod PILOT je zapisan neposredno iz HMI (IHMP ali WinCC prilagodljiv).
- Izhodi OAVR, ORER, OGVR in ORFR se lokalno uporabljajo za upravljanje valjev.
- Izhoda DEF in OT bere SMPLOC. Spremenljivke morajo upoštevati obliko $S*<SA>DT$ in $S*<SA>OT$, z $<SA>$ = ime mize in * = številka cone.
- Izhod DIAG bere HMI (IHMP ali WinCC prilagodljiv).
3.2.3 Miza A0

Pri mizi A0 bom opisal pomembnejše dele kode, ki sem jih dodal. To so nasičenje in pomanjkanje sani ter dvižni del mize A0.

1) Nasičenje

Slika 3.7 prikazuje aktivacijo nasičenja, kar pomeni, da začne miza A0 nalagati sani v zalogovnik. Deluje tako, da preverja prisotnost sani na mizah od A0 do A11 in na mizah E6 in E7, ki sta zadnji na liniji MN1. Če so vse naštete mize polne, se spremenljivka za nasičenje aktivira. Ko je miza A0 na spodnjem nivou, se vedno preverja, ali se je katera od miz od A1 do A11 že sprostila. Če je katera koli od teh miz prosta, se spremenljivka za nasičenje deaktivira.

Slika 3.7: A0 – postavljanje spremenljivke nasičenja

2) Pomanjkanje

Pomanjkanje je prikazano na Sliki 3.8. Ko pride do pomankanja, začne miza A0 jemati sani iz zalogovnika. Da se spremenljivka za pomanjkanje aktivira, morajo biti mize od A0 do A4 ter mizi E6 in E7 prazne. Vedno, ko je miza A0 na spodnjem nivou, se preveri, če je katera izmed miz E6 ali E7 že dobila sani in če jih jeh, se spremenljivka za pomanjkanje deaktivira.
3) Dvižni del mize A0

V kodi za dvigovanje mize A0 sem najprej mapiral nove digitalne signale. Signala za upočasnitev se ne mapira, temveč se za njegovo prožitev s pomočjo bloka SR (Set-Reset Flip Flop) preverjajo senzorji pozicije in oba senzorja upočasnitve (Slika 3.9).

Blok SR postavi signal, če je stanje signala na vhodu S "1" in na vhodu R "0". V nasprotnem primeru, če je stanje signala na vhodu S "0" in "1" na vhodu R, se flip flop ponastavi. Če je RLO na obeh vhodih "1", je vrstni red primarnega pomena. Flip flop SR najprej izvede ukaz za postavljanje, nato pa ukaz za ponastavitev signala, tako da ta naslov ostane ponastavljen do konca programskega skeniranja.

Ukaza S (postavi) in R (ponastavi) se izvajata samo, če je RLO "1". Kadar je RLO "0", signal ostane nespremenjen.
3.2 Cona 1 – zalogovnik

V primeru signala za upočasnitev zgoraj imamo na vhodu S zgornji senzor upočasnitev, na vhodu R pa spodnji senzor upočasnitev ali spodnji pozicijski senzor. To pomeni, da postavimo signal upočasnitev, šele ko je pokrit samo zgornji senzor upočasnitev. Ko pa se miza spušča, se signal ponastavi, ko pride do senzorja spodnje pozicije. Na enak način se preverja signal za upočasnitev spodaj.

Pri tej mizi je potrebno preverjati tudi oba jermena, in sicer vsakega posebej. Vhodna signala za jermena se ne mpirata, temveč se sproži napaka, če je vhodni signal jermena "0". Napaka ostane postavljena, dokler je operater ne resetira z gumbom reset na Z1ROP1, kot prikazuje Slika 3.10.
Slika 3.10: A0 – napaka jermena

Na podoben način je narejena tudi logika za varnostna zaklopa mize A0 (Slika 3.11). Razlika je samo v tem, da se tu preverjata oba zaklopa hkrati in da se sproži napaka, če sta oba vhodna signala enaka "0".

Slika 3.11: A0 – napaka varnostnih zaklopov

Koda se nadaljuje z logiko za delovanje. Za primer bom opisal logiko za dvig dvigala, ki jo prikazuje Slika 3.12.
Dvig dvigala se zgodi samo v dveh primerih, in sicer v primeru nasičenja ali v primeru pomankanja.

Potrditev ukaza za dvig se aktivira, če je postavljena spremenljivka za nasičenje, medtem ko ima miza A0 sani, le-ta pa ni v zgornji poziciji, tranzit naprej ali nazaj ni v poteku in ni zahteve za prehod pred mizo. Drug primer aktivacije spremenljivke za dvig se zgodi, če je postavljena spremenljivka pomanjkanja, če je miza prazna, le-ta pa v zgornji poziciji, tranzit naprej ali nazaj ni v poteku in ni zahteve za prehod pred mizo. Če operater poda ročni ukaz za dvig mize, se zahtevje za prehod pred mizo v obeh primerih ne upošteva, ostali pogoji pa se upoštevajo.
3.3 Cona 3 – servisni izvoz sani

Na ET200S postajo Z3ZB-IM v coni 3 smo petim obstoječim modulom dodali nekaj signalov, zraven pa še 12 novih modulov, od tega 6 napetostnih vhodnih in 6 tokovnih izhodnih. Dodala sta se tudi dva variatorja C2VAR1 in C2VAR2 ter servisna plošča dostopa Z3SPA2.

Uporabljeni signali za cono 3:

<table>
<thead>
<tr>
<th>Cona3</th>
<th>Simbol</th>
<th>Naslov</th>
<th>Tip</th>
<th>Komentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>DJC2VAR</td>
<td>I 300.3</td>
<td>BOOL</td>
<td>(Z3 IM1.M01.03) BOX COMMON CIRCUIT PROTECTOR TABLE C2 MCCB</td>
</tr>
<tr>
<td>M02</td>
<td>DJC7_1</td>
<td>I 301.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M02.02) ROLLER TABLE C7_1 MCCB</td>
</tr>
<tr>
<td></td>
<td>Z3CRM2</td>
<td>I 301.3</td>
<td>BOOL</td>
<td>(Z3 IM1.M02.03) ZONE3 CHECK GROUND RELAY 2</td>
</tr>
<tr>
<td></td>
<td>Z3KMS2</td>
<td>I 301.4</td>
<td>BOOL</td>
<td>(Z3 IM1.M02.04) SUPPLY IN SERVICE ZONE POWER ON</td>
</tr>
<tr>
<td></td>
<td>Z3CRM1</td>
<td>I 301.5</td>
<td>BOOL</td>
<td>(Z3 IM1.M02.05) ZONE3 CHECK GROUND RELAY 1</td>
</tr>
<tr>
<td>M04</td>
<td>Z3RMS1</td>
<td>I 303.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M04.02) ZONE3 IN SERVICE SAFETY COMMON</td>
</tr>
<tr>
<td></td>
<td>Z3RFZ1</td>
<td>I 303.3</td>
<td>BOOL</td>
<td>(Z3 IM1.M04.03) ZONE3 CLOSED ZONE SAFETY COMMON</td>
</tr>
<tr>
<td></td>
<td>Z3RLV1</td>
<td>I 303.4</td>
<td>BOOL</td>
<td>(Z3 IM1.M04.04) ZONE3 INVERTER READY COMMON</td>
</tr>
<tr>
<td>M05</td>
<td>C1DDPA</td>
<td>I 304.4</td>
<td>BOOL</td>
<td>(Z3 IM1.M05.04) ROLLER TABLE C1 FRONT OVER TRAVEL</td>
</tr>
<tr>
<td></td>
<td>C3DDPR</td>
<td>I 304.5</td>
<td>BOOL</td>
<td>(Z3 IM1.M05.05) ROLLER TABLE C3 REAR OVER TRAVEL</td>
</tr>
<tr>
<td>M13</td>
<td>AVRC2</td>
<td>Q 320.1</td>
<td>BOOL</td>
<td>(Z3 IM1.M13.02) ROLLER TABLE C2 MC ON</td>
</tr>
<tr>
<td></td>
<td>AVRC6</td>
<td>Q 320.6</td>
<td>BOOL</td>
<td>(Z3 IM1.M13.02) ROLLER TABLE C6 MC ON</td>
</tr>
<tr>
<td>M14</td>
<td>AVRC8</td>
<td>Q 321.0</td>
<td>BOOL</td>
<td>(Z3 IM1.M14.00) ROLLER TABLE C8 MC ON</td>
</tr>
<tr>
<td></td>
<td>ARRC8</td>
<td>Q 321.1</td>
<td>BOOL</td>
<td>(Z3 IM1.M14.01) ROLLER TABLE C8 BACKWARD MC ON</td>
</tr>
<tr>
<td></td>
<td>AVRC9</td>
<td>Q 321.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M14.02) ROLLER TABLE C9 MC ON</td>
</tr>
<tr>
<td></td>
<td>ARRC9</td>
<td>Q 321.3</td>
<td>BOOL</td>
<td>(Z3 IM1.M14.03) ROLLER TABLE C9 BACKWARD MC ON</td>
</tr>
<tr>
<td>M15</td>
<td>C8PUOPBAU1</td>
<td>I 1300.1</td>
<td>BOOL</td>
<td>(Z3 IM1.M15.01) C8PUOP EMERGENCY STOP 1</td>
</tr>
<tr>
<td></td>
<td>C9PUOPBAU1</td>
<td>I 1300.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M15.02) C9PUOP EMERGENCY STOP 1</td>
</tr>
<tr>
<td></td>
<td>C8PUOPBAU2</td>
<td>I 1300.5</td>
<td>BOOL</td>
<td>(Z3 IM1.M15.05) C8PUOP EMERGENCY STOP 2</td>
</tr>
<tr>
<td></td>
<td>C9PUOPBAU2</td>
<td>I 1300.6</td>
<td>BOOL</td>
<td>(Z3 IM1.M15.06) C9PUOP EMERGENCY STOP 2</td>
</tr>
<tr>
<td>M16</td>
<td>Z3_RMS1</td>
<td>Q 1310.1</td>
<td>BOOL</td>
<td>(Z3 IM1.M16.01) IN SERVICE ZONE SAFETY RELAY 1</td>
</tr>
<tr>
<td></td>
<td>Z3_RFZ1</td>
<td>Q 1310.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M16.02) CLOSED ZONE SAFETY RELAY 1</td>
</tr>
<tr>
<td>M17</td>
<td>DJC8</td>
<td>I 340.0</td>
<td>BOOL</td>
<td>(Z3 IM1.M17.00) ROLLER TABLE C8 MCCB</td>
</tr>
<tr>
<td></td>
<td>DJC9</td>
<td>I 340.1</td>
<td>BOOL</td>
<td>(Z3 IM1.M17.01) ROLLER TABLE C9 MCCB</td>
</tr>
<tr>
<td></td>
<td>i340.2</td>
<td>I 340.2</td>
<td>BOOL</td>
<td>(Z3 IM1.M17.02) RESERVE</td>
</tr>
<tr>
<td></td>
<td>i340.3</td>
<td>I 340.3</td>
<td>BOOL</td>
<td>(Z3 IM1.M17.03) RESERVE</td>
</tr>
<tr>
<td></td>
<td>i340.4</td>
<td>I 340.4</td>
<td>BOOL</td>
<td>(Z3 IM1.M17.04) RESERVE</td>
</tr>
</tbody>
</table>
Program za ureditev delovanja cone 3, ki sem ga moral dopolniti, obsega funkcjske bloke FB301, FB303, FB304, FB312 ter FB313 in je napisan v lestvični logiki.

Z3G je podatkovni blok z globalnimi spremenljivkami zacono 3. Vanj sem dodal nove globalne spremenljivke.
3.3 Cona 3 – servisni izvoz sani

3.3.1 Prehod med mizami

Logika za prehod je dokaj preprosta, za primer pa bom opisal prehod med mizama C0 ter C1. Koda realizacije prehoda se nahaja v funkcijskem bloku mize C0. Najprej se mapira signal gumba za zahtevo prehoda v statično spremenljivko. To se zgodi samo, če zahteva za prehod z druge strani ni postavljena (Slika 3.13).

Slika 3.13: Mapiranje gumba za prehod

Nadalje se ta spremenljivka ali spremenljivka zahteeve z druge strani prepiše v skupno zahtevo za prehod (Slika 3.14).

Slika 3.14: Zahteva za prehod
Če je zahteva za prehod postavljena, se v nadaljni kod preverja še pogoj, ali je katera od miz B11, C0 ali C1 v tranzitu. Ko je ta pogoj izpolnjen, se prižige neprekinjena zelena luč na obeh semaforjih. Če pogoj ni izpolnjen, se zelena luč prižiga v intervalu 0,5 s, zraven pa neprekinjeno sveti rdeča luč. Če zahteva za prehod ni postavljena, zelena luč ne sveti, rdeča pa sveti neprekinjeno.

Če je postavljena statična spremenljivka za zahtevo prehoda na kateri koli strani in operator pritisne na gumb za konec prehoda, se na drugi strani ponastavita obe zahtevi za prehod kot tudi skupna zahteva (Slika 3.15).

Slika 3.15: Ponastavitev zahteve za prehod

Dodana je bila tudi napaka predolgega časa prehoda (Slika 3.16). Le-ta je potrebna v primeru, ko operater pozabi pritisniti gumb za konec prehoda. S pomočjo sistemskega funkcijskega bloka DELAY (zakasnitev) se postavi napaka po 1 minuti, če so izpolnjeni naslednji pogoji: zahteva za prehod je postavljena, na mizi so sani, na naslednji mizi ni sani in tranzit na naslednjo mizo ne poteka.
3.3 Cona 3 – servisni izvoz sani

3.3.2 Servisna pulta

Servisni mizi C8 in C9 sta valjčni mizi, zato delujeta po preprostem postopku valjčnih miz. Imata pa tudi servisna pulta, katerih delovanje bom podrobneje opisal v nadaljevanju. Za primer bom vzel servisni pult C8PUOP mize C8.

Pri servisnem pultu se najprej preveri avtorizacija za delovanje. Le-ta se postavi, ko je signal za delovanje pulta aktiven in so sani na mizi (Slika 3.17).

![Diagram servisnega pulta](image)

Slika 3.17: Avtorizacija za delo

V nadaljevanju se aktivira lokalna spremenljivka za popravljene sani oziroma za nepopravljene sani. Če sta avtorizacija za delovanje in gumb za popravljene sani
aktivna, se aktivira lokalna spremenljivka za popravljene sani, hkrati pa se izbriše lokalna spremenljivka za nepopravljene sani. Če je pritisnjen gumb za nepopravljene sani, je logika obrnjena (Slika 3.18).

Slika 3.18: Popravljene/nepopravljene sani

V primeru, da so spremenljivka za popravljene sani, signal za delovanje pulta in gumb KONEC DELA aktivni, se postavi spominski bit, ki potrjuje, da so sani popravljene (Slika 3.19). Ta bit se uporablja tudi v kodi mize C2.

Slika 3.19: Popravljene/nepopravljene sani potrditev
V primeru aktivnega signala za delovanje pulta in prisotnosti sani na mizi, semafor operaterskega pulta sveti zeleno. V primeru, da so sani na mizi, a signala za delovanje pulta ni, zelena luč utripa v intervalu 0,5 s (Slika 3.20).

Slika 3.20: Servisni pult – zelena luč

Semafor sveti rdeče, kadar je signal za delovanje deaktiviran. Če pa je signal za delovanje aktiven, a na mizi ni sani, rdeča luč utripa v intervalu 0,5 s. V primeru testiranja luči, zelena in rdeča luč svetita istočasno.

Na operaterskem pultu sta nameščena tudi gumba bele barve POPRAVLJENO in NI POPRAVLJENO. Če je signal za delovanje aktiven in so sani prisotne, gumba utripata v intervalu 0,5 s, če pa je aktivna spremenljivka za testiranje luči, oba guma svetita istočasno.

Gumb POPRAVLJENO sveti tudi v primeru, ko so sani na mizi, je aktivna lokalna spremenljivka za popravljene sani, hkrati pa je lokalna spremenljivka za nepopravljene sani neaktivna. Za gumb NI POPRAVLJENO velja enako, samo da sta lokalni spremenljivki zamenjani (Slika 3.21).
3.3.3 Miza C2

Čitalnik RFID na mizi bere oznake RFID na saneh. Stanje sani določajo biti v podatkovnem bloku IDENT pod oznako »St. Étiquette 74« (CRAPI1). Če je postavljen bit 9, to pomeni, da so sani potrebne popravila in so poslane na servis. Ko miza C2 dobi sani s servisnih miz, dobi zraven tudi podatek operaterskega pulta, ali so sani popravljene ali ne. Če so sani popravljene, pobriše bit 9 in jih poslje naprej po liniji. Če sani niso popravljene, doda bit 10, kar pomeni, da gre sani naprej po liniji do izhoda BRA3, kjer se izločijo. Pri mizi C2 bom podrobneje opisal avtorizacijo za premik naprej in nazaj, saj ta upošteva več pogojev kot ostale mize. Opisal bom tudi pomični del mize C2. Miza je normalno v desni poziciji (pozicija 1), ko pa pelje sani na servis, se premakne na levo pozicijo (pozicija 2).

1) Premik naprej

V tem delu kode se postavi avtorizacija za vrtenje valjčkov naprej. To se zgodi v primeru, ko so izpolnjeni pogoji štirih različnih kombinacij:
1. Prisotnost sani na mizi, branje RFID je bilo uspešno, bit 9 ni postavljen in miza je v desni poziciji.
2. Prisotnost sani na mizi, branje RFID je bilo uspešno, bit 9 je postavljen, miza je v poziciji 1, pisanje RFID je bilo uspešno.
3. Prisotnost sani na mizi, branje RFID je bilo uspešno, bit 9 je postavljen, miza je v poziciji 2, miza C8 je zasedena, C9 pa je prazna.
4. Miza je prazna in na levi poziciji, miza C8 je zasedena in ima postavljen bit popravljeno ali nepopravljeno.

Slika 3.22: C2 – premik naprej
2) **Premik nazaj**

Avtorizacija za vrtenje valjčkov nazaj se postavi, ko so izpolnjeni pogoji dveh različnih kombinacij:

1. Miza je v levi poziciji, prisotnost sani na mizi, mizi C8 in C9 sta prazni.
2. Miza je v levi poziciji in je prazna, miza C9 je zasedena in ima postavljen bit popravljen ali nepopravljen.

![Diagram](network_diagram.png)

Slika 3.23: C2 – premik nazaj

3) **Pomični del mize C2**

Pri pomičnem delu mize C2 se najprej izvede mapiranje novih digitalnih signalov v statične spremenljivke, v nadaljevanju pa logika za delovanje. Za primer bom opisal premik mize v levo (*Slika 3.24*). Premik v levo se lahko zgodi, če ima miza sani ali jih nima, in sicer v naslednjih primerih:

Če miza ima sani in imajo le-te postavljen bit 9, se preveri, če miza ni v levem položaju, če senzorja prekoračitve spredaj in zadaj nista pokriti, če ne poteka tranzit naprej ali nazaj, če ni postavljen signal za premik desno, če miza ni v gibanju in če ni nobene napake senzorjev. Če miza nima sani, veljajo enaki pogoji, le da mora imeti namesto postavljenega bita 9 vsaj en signal za popravljene ali nepopravljene sani z miz C8 ali C9.
V kodi se postavljajo tudi napake senzorjev. Za primer bom opisal napako senzorja leve pozicije (Slika 3.25). S pomočjo sistemskega funkcijskega bloka DELAY (zakasnitev) se postavi napaka po 15 sekundah, ko so izpolnjeni naslednji pogoji: cona 3 je v avtomatskem režimu, avtorizacija za premik v levo je postavljena, senzor upočasnitve levo je pokrit, senzor leve pozicije pa ne. Napaka ostane aktivna, dokler je operater ne resetira na Z3MOP1.

Slika 3.24: C2 – premik levo

Slika 3.25: C2 – napaka leve pozicije
4 HMI – uporabniški vmesnik

Program za HMI (vmesnik človek stroj) je izdelan v programskem okolju OD\textsc{iL} (Outil d'Aide au Diagnostic d'Implantation Locale – orodje za diagnostiko lokalnih implementacij). To je popolnoma prilagodljivo programsko okolje za avtomatizacijske študije, ki se uporabljajo za ustvarjanje dokumentacije, PLK programe in aplikacije HMI. Enotni pristop zagotavlja doslednost in kakovost končnih rezultatov. Na svetovni ravni sta Renault in PSA za vse svoje projekte izbrala OD\textsc{iL}.

Razvoj OD\textsc{iL}-a zajema: arhitekturo platforme, komponente za komunikacijo, shranjevanje podatkov in interakcijo ter mehanizme za opredelitev in sistemsko uveljavljanje lastništva in pravic dostopa do podatkov. Programska oprema za platformo je na voljo pod licenco Open Source, zaradi česar je dostopna ne le partnerjem projekta, temveč praktično komur koli. To zagotavlja, da se platforma lahko uporablja, razširja in distribuira.

OD\textsc{iL} je inštaliran na nadzornih ploščah MOP, SOP in ROP, na katerih ima operater tako pregled in nadzor nad sistemom. Preko tega nadzornega sistema operater vidi shemo linij, potek delovanja, aktivirane senzorje, napake in navodila. V ročnem režimu lahko tudi upravlja z mizami.
4.1 Shema linije

Slika 4.1 prikazuje glavni zaslon razvajnega okolja ODiL. Gledano od leve proti desni se nahajajo sistemsko drevo, seznam elementov, pod njim specifikacije izbranega elementa, desno od njiju stolpec z orodji za risanje in slika, ki jo trenutno obdelujemo.

4.1 Shema linije

Operater lahko preko uporabniškega vmesnika vidi shemo celotne linije ali pa posamezne cone. Te sheme sem nariral tako, da le-te čim natančneje prikazujejo, kje se elementi v conah dejansko nahajajo. To je zahtevano tudi s strani naročnika, saj operaterju omogoča hitrejše iskanje posameznih elementov. Dopolnil sem shemi za cono 1 in cono 3.

Na Sliki 4.2, ki predstavlja shemo za cono 1, sem mizo AO spremenil v dvižno mizo. Šrafirana rumena podlaga predstavlja varovano območje, vrata v cono pa so označena kot Porte 1. Zraven sem dorisal še variatorja A0VAR1 in A0VAR2 ter poleg obstoječih miz dodal mize od A12 do A23.
Slika 4.2: Shema cone 1

Slika 4.3 prikazuje shemo za cono 3, kjer sem mizo C2 spremenil v pomično mizo, ki se nahaja v varovanem območju z vrati Porte 2. Poleg sem dorisal variatorja C2VAR1 in C2VAR2, mizi C8 in C9 pa sem narisal vzporedno z mizama C1 in C3.

Slika 4.3: Shema cone 3

4.2 Potek delovanja

Operater na prikazu (Slika 4.4) s tabelo miz vidi, katere mize se nahajajo v katerih conah. Zaradi boljše preglednosti imajo mize, ki imajo posebne funkcije, lasten
prikaz oziroma si ga delijo še z največ eno mizo. Na ta prikaz sem dodal polja za nove mize.

![Diagram](image1)

Slika 4.4: Tabela miz

S klikom na imena miz se odpre prikaz s podrobnostmi vseh miz, ki so v imenu označene, kot prikazuje Slika 4.5.

![Diagram](image2)

Slika 4.5: Pregled nad mizami
Vsaka miza ima svoj stolpec, v katerem se nahajajo 3 tipi podatkov. Pregled nad mizami:

- **Stanje,** ki prikazuje, ali ima miza ukaz za pošljanje sani naprej ali nazaj ali je v napaki.
- **Spomin,** ki prikazuje, ali so sani prisotne na mizi (Pn) in ali poteka tranzit naprej (Trn_av) ali nazaj (Trn_am). To pomeni, da lahko miza dobiva sani s prejšnje ali naslednje mize ali pa da jih pošilja v katero koli smer.
- **Senzor,** ki prikazuje, kateri senzorji se nahajajo na mizi in njihovo aktivnost oziroma neaktivnost.

Polja podatkov so aktivna, ko so obarvana zeleno. Na tem prikazu lahko operater hitro vidi, če je katera od miz v napaki. Napako lahko definira tudi s pregledom senzorjev, ali pa hitro vidi, če pride do napačnih tranzitov.

Spodaj je še polje vodenja ekranov, s katerim se lahko premikamo naprej ali nazaj po liniji, brez da bi morali nazaj na prikaz tabele miz.

4.3 Napake in navodila

Programsko okolje ODiL, ki smo ga uporabljali, je narejeno posebej za podjetje našega naročnika, zato le-ta z dodajanjem elementov večino napak generira avtomatsko. Slika 4.6 prikazuje nekaj napak. Tiste, ki imajo zraven narisane ključavnice, so bile generirane avtomatsko.

Slika 4.6: ODiL napake
4.4 Ročno upravljanje

Prvi stolpec prikazuje opis napake, drugi stolpec ime signala, tretji pa, kam napaka spada. Na panelu HMI se izpiše opis napake. Ko jo operater popravi, jo z gumbom resetira in napaka se pobriše.

Na panelu HMI se lahko izpišejo tudi navodila za določene funkcije. Navodila se izpišejo avtomatsko, glede na to, za katero funkcijo gre. Na Sliki 4.7 je primer navodil za pravilno zapiranje vrat.

Slika 4.7: Pravilno zapiranje vrat

Navodila se izpišejo, če operater vrat ne zapre pravilno, zaradi česar ne more zagnati cikla linije. Ko vsa navodila izvede pravilno, mora pritisniti tipko reset in navodila se pobrišejo. Takrat lahko ponovno zažene cikel linije.

4.4 Ročno upravljanje

Ko operater izbere ročni način, lahko z mizami opravlja po svoji volji in sani premika naprej in nazaj ter mize gor ali dol in levo ali desno. Pri tem delu mora biti zelo previden, saj blokade, ki bi mizo ustanovile zaradi napak, niso aktivne.
Slika 4.8: Ekran ročnih premikov

5 Zaključek

Z nadgradnjo transportne linije MN2 smo uspešno izpolnili naročnikove zahteve.

Postavljen zalogovnik v coni 1, sestavljen iz 12-ih miz z začasnim skladiščenjem sani, občutno zmanjša zastoje na liniji, saj deluje še bolje, kot da bi 12 dodatnih miz dodali neposredno na linijo. Največja prednost je, da ne zavzema prostora na liniji, ki ga skorajda ni, ker so dodane mize postavljene nad obstoječimi. Druga prednost je ta, da mize, ki jih skladišči ob nasičenju, ne pošlje takoj naprej, ko se nasičenje sprosti, ampak jih zadrži. Do nasičenja lahko pride tudi večkrat zaporedoma in tako zalogovnik vsakič pridobi nekaj miz. Ko pride do pomanjkanja, ima zalogovnik na zalogi več miz, ki jih lahko pošlja naprej in s tem še zmanjša zastoj.

Servisno območje v coni 3 zelo pripomore k servisiranju sani. Pred nadgradnjo na liniji ni bilo servisnega območja, zato so sani lahko izločili le na enem izhodu. Sledili so odvoz sani na servis, njihovo popravilo in vračanje na linijo, kar je bilo časovno neoptimalno. Z novima dvema servisnima mizama veliko prihranijo na času, saj se tedva nahajata neposredno ob liniji, kar omogoča hitro izločanje in vračanje sani na linijo. Servisni mizi sta lahko dostopni in omočata preprosto servisiranje s pomočjo servisnih pultov. Omogočata tudi servisiranje dveh sani istočasno, saj lahko dva operaterja popravljata sani vsak na svoji mizi. V primeru, da je popravilo sani zahtevnejše in ga operater ne more izvesti v servisni coni, lahko preko servisnega pulta postavi ukaz, da gredo sani na izločanje drugje na liniji.

Transporto linijo MN2 smo uspešno optimizirali in s tem zmanjšali zastoje na proizvodnji liniji. Kljub temu zastojev ni mogoče povsem izničiti, saj so le-ti lahko posledica mehanskih ali človeških napak, na katere nimamo vedno vpliva. V primeru, da se linija v določenem trenutku ustavi za dlje časa, tudi zalogovnik ne bo uspel
preprečiti zastoja. To bi bilo možno z večjim zalogovnikom, ali še bolje, z več zalogovniki postavljenimi na različnih mestih.
6 Literatura

https://revoz.si/sl/oddelki/

https://picclick.de/Siemens-Simatic-Rf340R-6Gt2801-2Ab10-113402830265.html#&gid=1&pid=1

https://www.odil-projekt.de/fileadmin/content/odil/publications/flyer_en.pdf

[5] Spletna stran German Research Center for Artificial Intelligence [čas dostopa: oktober 2019]