UMETNA INTELIGENCA IN ODLOČANJE O KRIVDI V KAZENSKEM POSTOPKU

(magistrsko diplomsko delo)

Avtor: Vid Kutoš

Ljubljana, september 2019
Iskrena hvala za mentorstvo, vođenje in trud pri magistrski nalogi mentorju Primožu Gorkiču. Ogromna zahvala gre Piki Šarf, Mihi Hafner, Alešu Završnik, Žigi Puklavec in Marcelu Obal za svetovanje in pomoč pri pišanju naloge.

Neizmerna hvala moji družini Darku, Jolandi in Filipu brez vas moja akademska pot ne bi bila mogoča.

Najlepša hvala tudi vsem prijateljem in drugim osebam, ki ste me spremljali skozi moj študijski čas, mi pomagali, me spodbujali ter me zabavali, ko je bilo potrebno.

Brez vas vseh bi moja študijska pot bila povsem drugačna.
Pozvetek

Ključne besede: Umetna inteligencija, kazenski postopek, sodnik, sojenje, krivda, algoritem
Abstract

New technologies also bring new challenges to the legal system. Artificial intelligence is a modern technology that changes the functioning of different social sectors. The question is whether artificial intelligence can completely and independently replace a judge, or whether it can only help him make decisions. The introduction of artificial intelligence into criminal justice processes can be both an advantage and a disadvantage for an individual over existing rights. Impacts need to be thoroughly analyzed, monitored and action taken - any negative consequences should be avoided. In the United States, artificial intelligence systems used are not in line with Council of Europe guidelines. These systems can summarize and further enhance human prejudice and discrimination against individuals (based on religion, race, sexual orientation). There are also attempts to introduce artificial intelligence systems in Europe, but the results are not convincing. In the future, such artificial intelligence algorithms will certainly help judges make decisions, in some cases being able to automate less demanding process tasks. Deciding if an individual is guilty with artificial intelligence systems is not possible yet. The future development of such systems can, however, greatly alter the overall legal system.

Keywords: Artificial intelligence, criminal procedure, judge, trial, guilt, algorithm
Kazalo

1 Uvod ... 1
2 Umetna inteligenca ... 2
 2.1 Kaj je umetna inteligenca? ... 2
 2.1.1 Začetki umetne inteligence in Turingov test 3
 2.2 Algoritem ... 3
 2.3 Razlika med avtomatizacijo in umetno inteligenco 3
 2.3.1 Avtomatizacija .. 4
 2.3.2 Umetna inteligenca ... 4
 2.4 Umetna inteligenca in open data (odprti oziroma prosto dostopni podatki) 4
 2.5 Način učenja umetne inteligence ... 5
 2.5.1 Strojno učenje ... 5
 2.5.2 Globoko učenje .. 5
 2.5.2.1 Nevronske mreže .. 6
 2.6 Vplivi na delovanje umetne inteligence .. 6
 2.6.1 Kvaliteta in pristranskost podatkov .. 7
 2.6.2 Načrtovanje sistema ... 7
 2.6.3 Kompleksnost interakcije ... 8
 2.7 Sodnik in sojenje .. 9
 2.1 Ureditev sodniške funkcije v Sloveniji ... 10
 3 Umetna inteligenca kot sodnik v postopku .. 11
 3.1 Uvod ... 11
 3.2 Vloge – pravni naslovi .. 11
 3.3 Sodišče opravlja notarsko funkcijo ... 12
 3.4 Poravnava .. 12
 3.5 Sodba .. 13
 3.6 Umetna inteligenca in zavest ... 14
 4 Umetna inteligenca v kazenskem postopku .. 16
 4.1 Uvod ... 16
 4.2 Faze uporabe umetne inteligence v kazenskem postopku 16
 4.2.1 Pred sojenjem ... 17
 4.2.2 Sojenje .. 17
 4.2.3 Po sojenju ... 18
 4.3 Objektivnost ... 18
 4.3.1 Popolna objektivnost algoritma .. 19
 4.3.2 Ali res želimo sodnika, ki je popolnoma objektiven? 19
 4.4 Prenašanje človeških predsodkov v sisteme umetne inteligence 20
 4.4.1 Uvod .. 20
6.2.3 Obveznost identifikacije sistema umetne inteligence ..37
6.2.4 Načelo pravičnosti .. 38
6.2.5 Obveznost ocenjevanja odgovornosti ... 38
6.2.6 Obveze točnosti, zanesljivosti in veljavnosti .. 38
6.2.7 Načelo kakovosti podatkov ... 38
6.2.8 Obveza javne varnosti .. 39
6.2.9 Načelo kibernetske varnosti .. 39
6.2.10 Prepoved tajnega profiliranja ... 39
6.2.11 Prepoved enotnega točkovanja (ocenjevanja posameznikov v družbi) 40
 6.2.11.1 Primer sistema enotnega točkovanja (ocenjevanja posameznikov v družbi).. 40
6.2.12 Obveznost ustavitve sistema .. 41
6.3 Primer uporabe smernic Sveta EU v primeru State v Loomis 41
6.4 Ali so smernice zadosti? ... 42
7 Zaključek ... 43
Literatura ... 45
1 Uvod

Razvoj sodobnih tehnologij predstavlja velike izzive za različne ustaljene institucije ter z njimi povezane družbene sisteme. Pravo je temeljni sistem, ki določa normalno delovanje sodobne družbe in postavlja splošna normativna pravila za celotno organiziranost družbe. Pravila, ki jih določa pravni sistem, morajo spoštovati vsi pripadniki družbe. Sodnik je v vlogi pooblaščene institucije, ki odloča o spoštovanju pravil posameznika ter o morebitni krivdi pri kršenju teh pravil. Vloga sodnika je bila v zgodovini različna. Ekskluzivno vlogo razsojanja o spoštovanju pravil so imeli različni posamezniki, od boga, ki je ljudem preko izbrancev sporočal svoje odločitve, preko vladarjev, ki so imeli lahko tudi absolutno moč in so odločali o usodi pripadnikov družbe ter do poklicnih sodnikov, ki so v sodobnem svetu strokovnjaki – pravniki.

Ob razvoju tehnologij umetne inteligence je njihova uporaba v pravu le vprašanje časa. Ker gre v sodnih primerih za odločanje o krivdi obdolženca in kaznovanju, se postavlja več vprašanj o pravilni vpeljavi sodobnih sistemov umetne inteligence.

V prvem poglavju bom opisal, kaj sploh je umetne inteligence ter na kakšen način delujejo algoritmi, ki so sestavni del umetne inteligence. Predstavil bom osnovne pojme, ki so na tem področju pomembni, predstavil bom institut sodnika ter analiziral njegove naloge in opravila. Sam način procesa sprejemanja sodnikovih odločitev je pomemben pri razumevanju avtomatizacije opravil in načinu razvoja algoritmov.

Glavno vprašanje, ki si ga postavljam v nalogi, je ali lahko umetna inteligencia samostojno nadomesti sodnika v kazenskem postopku in v kakšni meri lahko predstavlja podporo sodniku pri sprejemanju njegovih odločitev. Analiziral bom kakšne posledice ima lahko vpeljava takšnega sistema na delo sodnega sistema, uveljavljanje pravic posameznika ter kako preprečiti morebitne negativne posledice.

Podrobnje bom predstavil sisteme ocen tveganj v kazenskem postopku ter njihov vpliv na domnevo nedolžnosti. V zadnjem poglavju bom predstavil že obstoječo ureditev na področju umetene inteligence ter se opredelil do njene uporabnosti.

Naloga se ne bo podrobnje ukvarjala z napovedovanjem kaznivih dejanj.
2 Umetna inteligenta

2.1 Kaj je umetna inteligenta?

Izraz umetna inteligenta označuje poskus reprodukcije človekove strukture razmišljanja v kompleksnih primerih odločanja s pomočjo računalnika, ki ga programiramo tako, da lahko sorazmerno samostojno rešuje zastavljene naloge. Pogosto se z izrazom opisuje posnemanje naravne inteligence s pomočjo algoritmov, ki oponašajo inteligentno obnašanje. Umetno inteligenco pojmujemo kot simulacijo, povzemanje človeškega načina odločanja in razumevanja, ki ga izvršuje stroj - računalnik. Cilj je ustvariti računalniški algoritem, ki bo lahko robotiziral in tako nadomestil človeški način razmišljanja, oziroma ustvariti in oblikovati stroj oziroma program, ki se na inteligentnem nivoju odziva in obnaša kot človek.¹

Umetna inteligenta je izraz, ki se pogosto pojavlja v povezavi z vsakodnevnimi izdelki kot so mobilni telefoni, hladilniki, avtomobili, pralni stroji, ipd.² Za uporabnika brez ustreznega tehničnega znanja umetna inteligenta predstavlja revolucionarno tehnologijo, ki mu bo olajšala življenje. Vseeno pa umetna inteligenta v trenutnem stanju tehnološko še ne izpolnjuje obljub o uporabnosti. Velikokrat se besedna zveza »umetna inteligenta« pojavlja kot buzzword (beseda, ki pri posamezniku vzbudi interes), s katero se želi povečati prodaja. Podjetja uporabljajo izraz umetna inteligenta za različne oblike in funkcije avtomatizacije, ki obstajajo že dalj časa. Primer tovrstne avtomatizacije je denimo telefon, ki prepozna, kaj želimo fotografirati, in optimizira nastavitve za ustvarjanje boljše fotografije. Z izrazom umetna inteligenta se tako nepravilno označujejo postopki in opravila, ki so zgolj navadna avtomatizacija, kar pa ne ustreza definiciji izraza umetna inteligenta.³

Prava in trenutno največja prednost umetne inteligence je kompleksna in hitra obdelava zelo velike količine podatkov in sposobnost sprejemanja avtonomnih odločitev. Človek je tovrstne podatke seveda prav tako sposoben obdelati, vendar za to potrebuje veliko več časa.

Umetna inteligenca ima tudi sposobnost samodejnega učenja s pomočjo ponavljanja nalog in raziskovanja podatkov. Za vzpostavitev sistema umetne inteligence je potreben človeški faktor, ki jo ustvari in razvija ter vanjo prenaša znanje in informacije.

2.1.1 Začetki umetne inteligence in Turingov test
Človekova težnja po stvaritvi umetne inteligence, ki bi bila enakovredna ali celo naprednejša od njega samega, se je pojavila že v 20. stoletju. Sam izraz umetna inteligence je zelo težko definirati.

Leta 1950 je Alan Turing, britanski logik, matematik, kripto-analitik in informatik razvil test, s katerim je želel ugotoviti, ali je zmožnost računalnika lahko enaka miselni sposobnosti človeka. Test poteka tako, da postavimo človeškega izprševalca pred zaslon, ne da bi videl ali slišal, s kom komunicira. Kot sogovorca ima človeka in stroj. Celoten pogovor poteka pisno s tipkanjem v računalnik. Izprševalec obema izmenično postavlja vprašanja, na koncu pa se odloči, kateri sogovorec je stroj in kateri človek. V primeru, da mu ne uspe ugotoviti, kateri sogovorec je stroj in kateri človek, je stroj oziroma umetna inteligencia opravila Turingov test. Ob takem pozitivnem izidu Turingovega testa naj bi stroj imel enake oziroma višje umske sposobnosti kot človek.

2.2 Algoritem
Sistemi umetne inteligence so sestavljeni iz algoritmov. Algoritmi opisujejo pravila in potek pravil za reševanje problema ali skupen problemov. Sestavljeni so iz natančno opredeljenih posameznih korakov za izvajanje izračunov, obdelave podatkov, avtomatiziranega sklepanja in drugih opravil. Mogoče jih je izraziti tako v računalniškem jeziku za izvedbo programa kot tudi v človeškem jeziku. Za rešitev problema s pomočjo algoritmov se določen vhodni podatek spremeni v izhodni podatek.

2.3 Razlika med avtomatizacijo in umetno inteligenco
Izraza umetna inteligenca in avtomatizacija se mnogokrat napačno uporabljata kot sopomenki. Oba izraza se uporablja v zvezi s programsko opremo, robotih ali drugih strojih, ki omogočajo...

6 Czernik Agnieszka, Was ist ein Algorithmus – Definition und Beispiele, URL: https://www.datenschutzbeauftragter-info.de/was-ist-ein-algorithmus-definition-und-beispiele/ (22. avbust. 2019)
večjo produktivnost ter uspešnost. Algoritme umetne inteligence lahko uporabljamo v programski opremi, robotih in drugih strojih v katerih lahko avtomatiziramo določena opravila.

2.3.1 Avtomatizacija
Avtomatizacija je po definiciji strojna ali programska oprema, ki je brez človeške interakcije sposobna opravljati določene ponavljajoče se naloge. Avtomatizacija lahko temelji tudi na umetni inteligenci, ni pa to nujno, do nje na primer pride že z vzpostavitvijo senzorja pred hišnimi vrati, ki samodejno prižge luč. Avtomatizacija se vzpostavi s programiranim postavljanjem pravil.7

2.3.2 Umetna inteligencia
Umetna inteligencia je tudi znanost, ki se ukvarja z izdelavo pametnih strojev, z izdelavo strojne in programske opreme, ki je sposobna posnemati ter nadomestiti ali prehiteti človekovo vedenje in inteligenco. Algoritmi umetne inteligence morajo imeti sposobnost obdelave velike količine podatkov in samostojnega odločanja, uporabe nevronskih mrež ter zmožnost samostojnega strojnega učenja. Cilj razvoja sistemov umetne inteligence je približati zmožnosti programske opreme načinu človekovega mišljenja. V nasprotju z osnovno avtomatizacijo, kjer je možno enostavno predvideti rezultate glede na zunanj dejanike, pri umetni inteligenci podobno kot pri človeški inteligenci obstaja stopnja negotovosti pri odločitvah.8

2.4 Umetna inteligencia in open data (odprti oziroma prosto dostopni podatki)
Algoritmi umetne inteligence potrebujejo zelo velike količine podatkov, iz katerih lahko s strojnim učenjem pridejo do željene oblike informacij. Pomembna je izbira relevantnih podatkov, ki omogočajo smiselno oblikovanje povezav in procesov, ki bodo omogočali kvalitetne višje oblike informacij. Za doseglo strojnega učenja je potrebno pridobiti obsežne podatkovne baze. V primeru uporabe umetne inteligence v sodstvu so takšni podatki sodbe, vloge, pritožbe strank, zakoni ter druga pravno relevantna besedila.9

Za zagotavljanje ustrezen količine relevantnih podatkov za delovanje umetne inteligence je pomembna podatkovna zbirka. Takšne, nujno potrebne zbirke podatkov se v angleščini

8 McCorduck, Machines Who Think (2004), str.243-260
imenujejo open data (odprti oziroma prosto dostopni podatki). S tem izrazom so definirani podatki, do katerih lahko dostopa, jih obdeluje ter posreduje kdorkoli in v kakršenkoli namen. Omejevanje uporabe teh podatkov je dovoljeno samo za zagotovitev vira ter dostopnosti do znanja.

2.5 Način učenja umetne inteligence

Osnovna ideja algoritma, ki ga opisujemo kot umetno inteligenco, je tak algoritem soočiti z različnimi nalogami, ki jih bo podobno kot človek sam sposoben rešiti. Cilj je torej s strojnim programom najti podoben način kognitivnega zaznavanja in odločanja, kot ga ima človek. Pogosto se za postopek učenja sistema umetne inteligence uporabljata dve obliki programskih načinov in sicer deep learning (globoko učenje) in nevronsko mreže.

2.5.1 Strojno učenje

Strojno učenje opisuje računalniško učenje s pomočjo algoritmov in statističnih modelov, ki jih računalniški sistemi uporabljajo za izvajanje določene naloge brez uporabe izrecnih navodil, pri čemer se namesto tega opirajo na sklepanje s pomočjo vzorcev. Strojno učenje spada v podvrsto umetne inteligence. Algoritmi strojnega učenja temeljijo na matematičnih modelih, ki s pomočjo vzorčnih podatkov, znanih kot podatki učenja, sprejemajo napovedi ali odločitve, ne da bi bili izrecno programirani za izvajanje te naloge.

2.5.2 Globoko učenje

Globoko učenje je način strojnega učenja, ki temelji na nevronskih mrežah. Učenje je lahko nadzorovano, delno nadzorovano ali nenadzorovano. Globoko učenje deluje na podlagi različnih stopenj ekstrakcije podatkov. Na primer pri obdelavi slike lahko spodnja stopnja prepozna robove slike, medtem ko lahko višja stopnja identificira pojme, ki so pomembni za človeka, na primer številke, črke ali obrazy.

11 Luber, Stefan, Was ist Machine Learning? URL: https://www.bigdata-insider.de/was-ist-machine-learning-a-592092/ (22. marec 2019)
2.5.2.1 Nevrnske mreže

Nevronske mreže so oblike računalniških programov, ki izvajajo nove in vnaprej neznane naloge. V nasprotju z navadnimi programi lahko takšna nevrnska mreža avtonomno ustvarja nove modele zaključkov in rezultatov. Posebnost takšne nevrnske mreže je, da ne potrebuje vnaprej programiranih pravil, ampak ima možnost dostopa do vseh razpoložljivih podatkov v svojih podatkovnih bazah.\(^{14}\)

Primer uporabe nevrnske mreže je prepoznavanje objektov ali subjektov. Navadni programi ne morejo uspešno in zanesljivo prepoznati objektov, ker je programiranje obsežno in ne prinaša zanesljivih rezultatov. Rezultati bi bili omejeni le na vnaprej programirane rešitve in ne bi bili sposobni prepoznati neznanih objektov. Nevronske mreže so sposobne pravilno prepoznati objekte ter jih razlikovati od ostalih objektov, ki so shranjeni v podatkovnih bazah. Nujni pogoj za uspešno delovanje nevrnske mreže je velika količina podatkov v podatkovnih bazah ter podatki o žep opravljenih referenčnih odločitvah, ki omogočajo samostojno prepoznavo objektov. V primeru morebitnih napak je nevrnska mreža sposobna prepoznati takšne napake in se učiti iz podobnih primerov. Za razliko od avtomatizacije ni potrebno vnesti vseh možnih stanj, temveč se iz podatkovnih baz in preteklih odločitev samostojno oblikujejo rezultati.\(^{15}\)

2.6 Vplivi na delovanje umetne inteligence

Delovanje sistema umetne inteligence je odvisno od treh glavnih faktorjev\(^{16}\):

- kvalitete podatkov,
- načrtovanja sistema,
- kompleksnosti interakcij.

Na prva dva našteta dejavnika lahko vplivamo, saj sta povezana s človeškim delovanjem, pri tretjem faktorju pa nastane zaradi sposobnosti samostojnega učenja sistemov umetne inteligence težava, saj človek morda ne bo sposoben razumeti kompleksnosti interakcij. To torej pomeni, da človek s svojimi kognitivnimi sposobnostmi ne bo sposoben razumeti postopkov, ki pripeljejo do predlaganih rešitev.

\(^{14}\) Einleitung, URL:http://www.neuronalesnetz.de/einleitung.html (23.marec 2019)
\(^{15}\) Trainings- und Testphase, URL: http://www.neuronalesnetz.de/training.html (23.marec 2019)
\(^{16}\) Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 15
Tak primer je denimo Algoritem Deep Patient, ki je sposoben z veliko verjetnostjo napovedati psihiatrične motnje kot je shizofrenija, vendar zdravniki ne razumejo načina, s katerim algoritem prepozna psihične motnje, saj jih sami iz podatkov težko prepoznajo.17 Tak primer oriše tudi izvor strahu pred neznanim, ki ga prinaša sistem umetne inteligence, saj ne razumemo popolno njenega delovanja.

2.6.1 Kvaliteta in pristranskost podatkov
Podatki, ki se uporabljajo za usposabljanje sistema umetne inteligence, so lahko zelo pristranski, ker izhajajo iz človeških virov, slednji pa niso nepristranski. Predstavljamo si lahko podatke, ki vključujejo le ljudi določene rase; takšni podatki ob aplikaciji umetne inteligence seveda ne bodo splošno uporabni in nevtralni. Vključevanje različnih naborov podatkov je zelo težavno, ker jih sestavljajo ljudje, ki so že po svoji naravi pristranski. Rezultati, do katerih sistemi umetne inteligence s takšnimi ne-nevtralnimi podatki pripeljejo, lahko še potencirajo pristranskost in predsodke.18

2.6.2 Načrtovanje sistema
Odločitve, ki jih sprejmejo človeški ustvarjalcii sistema umetne inteligence, imajo lahko pomembne posledice na obstoječe človekove pravice. Človeški programerji lahko določenim spremenljivkam pripišejo večjo prioriteto kot drugim, na ta način je tudi sistem pristranski pri svojih rezultatih. Zagotavljanje ustrezne uravnoteženosti različnih nivojev in vrst podatkov je zelo zahtevno in mora v svojem bistvu slediti človeškemu načinu razmišljanja. Že sama analiza človekovega načina razmišljanja predstavlja velik strokovni problem za razvijalce takšnih naprednih sistemov, odločitve o zgradbi algoritmov pa še toliko bolj. Rezultati takšnih načrtovanj imajo lahko tako pozitivne kot tudi negativne posledice, v pravnih algoritmov pa tudi vpliv na človekove pravice.19

17 Knight, will, The Dark Secret at the Heart of AI, URL: https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ (24.marec 2019)
18 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 15
19 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 15
2.6.3 Kompleksnost interakcije

Ko je vzpostavljen sistem umetne inteligence, ta pride v stike z zunanjim okoljem in podsistemi na načine, ki morda niso bili prvotno predvideni niti s strani ustvarjalcev samega sistema. Takšne kompleksnosti si je težko predstavljati in ravno zaradi težave z razumevanjem delovanja takšnih sistemov, imajo lahko rezultati v pravnih zadevah pomemben vpliv na upoštevanje človekovih pravic. V nekaterih primerih algoritmov lahko takšne vplive ugotavljamo z uporabo določenih naprednih analitičnih tehnik, vendar vedno obstaja možnost nezaznanega vpliva sistema umetne inteligence na obstoječe človekove pravice. 20

20 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 15
2 Sodnik in sojenje

Za boljše razumevanje umetne inteligence kot akterja-sodnika, je potrebno pojasniti, kakšna je vloga sodnika v procesu sojenja. Kazenski postopek se uvede na zahtevo upravičenega tožilca. Za dejanja, za katera se storilec preganja po uradni dolžnosti, je upravičeni tožilec državni tožilec, za dejanja, za katera se preganja na zasebno tožbo, pa je upravičeni tožilec zasebni tožilec. 21

Naloga sodnika je soditi, subsumpcija dejanskega življenjskega stanja s pravnim pravilom, čemur sledi izrek sodbe, ki je v idealnem primeru pravična za vse stranke. V zasebnem pravu to pomeni razlago pravic in obveznosti med strankami. V javnem pravu je ocena pravic in obveznosti med državo in posameznikom, v kazenskem pravu je to obsodba ali oprostitev obdolženca. Sama razlaga te storitve ali naloge se najde že v latinskih pravno-procesnih osnovah: Da mihi factum, dabo tibi ius; »Daj mi dejstva in ti bom iz njih izpeljal pravo.«22

Sodnik je odgovoren za predhodno raziskavo dejanskega stanja, na podlagi katerega se zahteva sodba. To se posebej kaže v kazenskem postopku, v katerem praviloma velja načelo oficialnosti, ki sodišču nalaga postopanje po uradni dolžnosti.

Sodnik je kljub vsemu trudu, da bi bil nepristranski, samo človek, ki s pomočjo svojega znanja, izkušenj ter uporabe predpisov odloča o izidu sodbe. Sodnik torej ob odločanju upošteva tudi svoja lastna prepričanja in svoj pogled na svet, ima svojo lastno nazorsko usmeritev ter svojo filozofsko in politično prepričanje. Seveda je sodnikova naloga, da ob odločanju zgoraj omenjene lastnosti pozabi, vendar kljub vsemu trudu te ostanejo nekje v podzavesti in lahko vplivajo na njegovo odločitev.23

Sodnikova naloga ni samo prenos določenega dejstva pod določeno pravno normo, temveč premišljena konkretizacija ustreznih, večinoma abstraktnih norm povezanih s predmetom zadeve. Sodnik svojo odločitev oblikuje v obliki sodbe, ki tvori bistvo sodne prakse. Sodna praksa istočasno tvori ter spreminja materialno pravo. V Sloveniji je funkcija sodnika urejena že v sami Ustavi, saj je poklic sodnika zelo pomemben za pravno delovanje družbe.

21 Zakon o kazenskem postopku(ZKP), Ur.1.RS, št. 32/12, 19. člen
22 Pavčnik, Marijan, Teorija prava, str.326-328
23 Plauštajner, pravica do neodvisnega sodnika (1994), str. 5-6
2.1 Ureditev sodniške funkcije v Sloveniji

24 Ustava Republike Slovenije (URS), Ur.1.RS, št.33/91, 125. člen
25 URS. 129. člen
26 URS. 132. člen
27 URS. 133. člen
28 URS. 131. člen
3 Umetna inteligenca kot sodnik v postopku

3.1 Uvod
Umetna inteligenca bo v prihodnosti lahko opravljala in tudi nadomestila sodnika v postopku. Sistemi umetne inteligence bi lahko nudili poceni alternativo dosedanji ureditvi reševanja pravnih težav in problemov, ker bi posameznik lahko enostavno, hitro in poceni dobil nasvet o pravnem statusu posameznikovih težav. Tako bi se razbremenil tudi sistem državnega sodnega sistema, ker bi enostavnejše primere posamezniki lahko reševali sami. Sistemi umetne inteligence bi lahko predstavljali tudi uspešno alternativo dosedanji ureditvi reševanja pravnih težav in problemov, ker bi se tako zmanjšala možnost neustreznih stanj in zaključkov, ki so pomembni v pravnih poslih in opravilih.

Za razlago, kako lahko umetna inteligenca pomaga sodiščem pri svojem delu, je potrebno analizirati delo sodišč ter identificirati posamezne postopke.

Nizozemski raziskovalci so delo civilnih sodišč na prvi stopnji razdelili v štiri glavne dele:

- vloge iz pravnih naslovov,
- sodišče, ki opravlja notarsko funkcijo,
- poravnave,
- sodbe.

Ob tem so prišli do zanimivih rezultatov glede razdelitve dela na sodiščih. Sodišča se največkrat ukvarjajo z vlogami in sicer te predstavljajo 41 % njihovega dela, notarsko delo predstavlja 36 % opravil, poravnave 12 % in sodbe le 11 % njihovega dela.

3.2 Vloge – pravni naslovi

Nizozemski raziskovalci so delo civilnih sodišč na prvi stopnji razdelili v štiri glavne dele:

- vloge iz pravnih naslovov,
- sodišče, ki opravlja notarsko funkcijo,
- poravnave,
- sodbe.

Ob tem so prišli do zanimivih rezultatov glede razdelitve dela na sodiščih. Sodišča se največkrat ukvarjajo z vlogami in sicer te predstavljajo 41 % njihovega dela, notarsko delo predstavlja 36 % opravil, poravnave 12 % in sodbe le 11 % njihovega dela.

3.2 Vloge – pravni naslovi

30 Relling, Rondetafelgesprek over artificiële intelligentie in het recht (2018)

29 Relling, Rondetafelgesprek over artificiële intelligentie in het recht (2018)
tem primeru za stranko v postopku ni tveganja ali dodatnih obremenitev. Takšno opravilo je dokaj mehanično, vendar pa v strukturi opravil sodišča predstavlja največji številčni obseg opravil. Takšna opravila so zelo primerna za sisteme umetne inteligence, ker lahko zelo uspešno, poceni in v kratkem času opravijo svoje delo. Stranka bi lahko vložila elektronsko zahtevo na sodišče, umetna inteligencija v to vlogo nemudoma obdela ter jo ustrezno klasificira ter stranki potrdi ali zavrne obstoječe priznanje pravice. Takšna omenjena opravila lahko umetna inteligencija opravi brez kakršnegakoli zunanjega vpliva človeškega vira.

3.3 Sodiščne opravila notarsko funkcijo

Naslednja vrsta dela, ki ga opravljajo sodišča, je notarsko delo. Ta vrsta dela je enako sestavljena iz vlog, ki jih dve ali več strank vložijo na sodišče in terjajo ureditev ali potrditev državnega organa. Največkrat so to primeri, ko sta stranki ali več strank že vnaprej dogovorjeni o dodelitvi pravic in obveznosti in potrebujeta uradno potrdilo oziroma oceno sodišča. Razlika med notarskim delom in vlaganjem vlog je, da gre pri vlogah za potrjevanje že obstoječih pravic stranki, medtem ko gre pri notarskem delu za predlagano potrditev že vnaprej dogovorjenih pravic. V primeru notarskega dela stranke torej nimajo tveganja, saj so se glede ureditve pravic in obveznosti že predhodno same uskladile, sodišče pa le preveri pravni status takšnih dogovorov ter jih potrdi oziroma uskladi z zakonodajo. 31

Tudi v tem primeru je možna uporaba sistema umetne inteligence, ki lahko v svojih obsežnih bazah pravnih virov preveri zakonitost predlaganih pravnih poslov in razmerij. Kot v prejšnjem primeru se lahko vloge notarskih overitev vložijo v elektronski obliki. Umetna inteligencija enostavno preveri formalno in materialno pravilnost takšne vloge, dogovora ter hitro, poceni in učinkovito reši zadane primere. V primerih pravnih neskladij lahko tudi predlaga nabor možnih rešitev, ki jih stranke izberejo in enostavno dosežejo ustrezno formalno pravno usklajenost. Glavna prednost sistema umetne inteligence v notarskem delu sodišč je predvsem razbremenitev.

3.4 Poravnava

Poravnavo določa obligacijski zakonik v 31. poglavju. Sam pojem je določen v 1051. členu, ki pravi: »Osebe, med katerimi je spor ali negotovost glede kakšnega pravnega razmerja, s pogodbo o poravnavi z vzajemnimi popustitvami prekinejo spor oziroma odpravijo negotovost

31 Relling, Rondetafelgesprek over artificiële intelligentie en het recht (2018)
in določijo svoje vzajemne pravice in obveznosti.«³² Torej v poravnavi sodeluje več strank z nasprotujočimi pravicami in obveznostmi, ki z vzajemnimi popustitvami postopoma razrešijo spor v obliki pogodbe o poravnavi. Stranke lahko same razrešijo spor s tem, da se medsebojno dogovarjajo in komunicirajo ter skupaj poiščejo rešitev. Velika prednost tega postopka je, da stranke same odločajo o izidu spora. V tem primeru algoritem umetne inteligence ne more zanesljivo napovedati izida poravnave, ker gre za dinamičen proces več strank, lahko pa sistem učinkovito nadzira in predlagja postopke uskladitve in razrešitve končnega dogovora. Tudi v primeru poravnave sta stranki v medsebojnem razmerju, podobno kot pri notarskem delu.³³

3.5 Sodba

Sodišča se s sojenji kot najbolj kompleksno in zahtevno obliko pravnega dela ukvarjajo najmanj. Tako predstavlja sojenje na Nizozemskem le 11 % vseh opravil sodišč. V sodnem postopku je več strank, tožnik, toženec in sodnik. Tožnik in toženec sta v sporu glede obstoja svojih pravic in obveznosti, sodnik pa kvalificirano odloča v sporu med njima. Sam izid sodbe je med navedenimi nalogami sodišča za stranke najbolj nepredvidljiv.³⁴

³² Obligacijski zakon (OZ), Ur. 1. RS, št. 20/18, 1051. člen
³³ Relling, Rondetafelgesprek over artificiële intelligentie in het recht (2018)
³⁴ Relling, Rondetafelgesprek over artificiële intelligentie in het recht (2018)
Algoritem umetne inteligence bi v primeru sojenja delovala kot podpora in pomoč sodnikom pri njihovem delu, analizi dejstev in procesov ter uporabni velike količine podobnih predlaganih rešitev v procesu. Sodišče bi lahko prejelo vloge strank v elektronski obliki in v začetni fazi analiz te iskanja rešitev z aplikacijo sistema umetne inteligence prišlo do stopnje napredka v zadevi, za katerega sodnik ne bi bil nujno potreben. V kasnejših fazah bi seveda sodnik moral biti vključen v delo in bi mu bilo sprejemanje odločitve precej olajšano, ker bi se lahko posvetil samemu procesu odločanja ob jasno predloženih in kvalitetnih dejstvih. Teža odločitve sodnika bi seveda vsebovala tudi moralno noto, ki je sistemi umetne intelligence doslej še niso sposobni vključiti v sodno odločitev.

3.6 Umetna inteligence in zavest
V vseh fazah postopka je trenutno prisoten človeški sodnik, ki sprejema odločitve. Za sprejem odločitev mora sodnik biti pri zavesti, saj lahko samo tako dojema okolico. Zavest in namen kaznivega dejanja sta abstraktna pojma, ki sta lastna le človeku in ju torej lahko prepozna samo človek. Umetna inteligencia se je sposobna naučiti oziroma reproducirati določene človekove odločitve. Da bi jo usposobili odločati o krivdi posameznika, bi ji morali poleg strojnega učenja iz kazenskopravnih primerov dodati zavest. Zavest je ena od poglavitnih značilnosti človeškega obstoja. Znanost je po svoji naravi objektivna, zavest pa je po svoji naravi subjektivna. Človeška dejavnost je skupaj tako subjektivnega kot subjektivnega. Ker sistemi umetne inteligence ne morejo delovati in razumeti subjektivnega dejavnika, tako ne delujejo na način, ki bi se približal razmišljanju človeka. Znanost, kot tudi pravna znanost, je definirana z zapleteno logiko, vendar je ta logika omejena in je nujno potreben modrec oziroma razsodnik, ki ga v kazenskem pravu poseblja sodnik, da v mejnih primerih odloči, saj se sveta in krivde ne da dokončno uokviriti v pravila. Svet je preveč zapleten in s tem tudi neopisljiv z logiko, pravili, enačbami in algoritmi. Število težav, ki obstajajo na svetu, je neskončno, kar pomeni, da je številko tako velika, da algoritmi ne morejo pravilno selektivno izbrati, zajeti ter rešiti teh težav.35

Sistemi umetne inteligence v trenutnem stanju niso sposobni ugotoviti in prepoznaniti notranjih nagibov posameznika, saj algoritmi nimajo zavesti, ki je temeljna za kompleksno razumevanje človekovih dejanj. Sistemi umetne inteligence imajo v primerjavi s človekom prednosti v hitri

35 Konenko, Natural and machine learning, intelligence and consciousness (2009), str. 239-258
analizi in obdelavi podatkov ter iskanjem vzročno posledičnih zvez znotraj njih. Tako so takšni sistemi uspešni v določanju podpornih informacij v sodnih procesih, vendar dandanes še ne morejo nadomestiti sodnikov.

Umetna inteligencija torej še ne more samostojno odločati o sami krivdi obtoženca v kazenskem postopku, lahko pa je sodniku v pomoč pri sojenju. Sodnik je tisti, ki bo moral določiti krivdo obtoženca. Vzpostavljen sistem umetne inteligence mu bo pomagal pri svojem delu. Sistem umetne inteligence bo tako lahko pomagal sodnikom v vseh naštetih fazah, vendar v trenutnem stanju tehnologije zaradi neprisotnosti zavesti ne bo mogel samostojno odločati v posameznih fazah postopka.
4 Umetna inteligenc v kazenskem postopku

4.1 Uvod
Odločanje o krivdi obtoženca v kazenskem postopku s pomočjo umetne inteligence ima velik potencial ravn zaradi zmožnosti obdelave velike količine podatkov in že izvedenih procesov, ki so javno dostopni. Z dinamiko razvoja sistemov umetne inteligence v zadnjem desetletju postaja možnost uporabe v različnih vejah znanosti ter tudi v sodstvu vedno bolj verjetna. Vseeno pa se zastavlja vprašanje omejitve dejanskega uporabe »vsemogoče« tehnologije umetne inteligence. Sodnik v kazenskem postopku opravlja številne postopkovne in materialne funkcije. Najpomembnejša funkcija sodnika pa ostaja, da odloči o krivdi obtoženca. Ta odločitev je nedvomno ključnega pomena tako za obtoženca kot tudi za žrtve kaznivih dejanj. Zaradi tega se od sodnikov pričakuje veliko znanja in lastnosti kot so neodvisnost, profesionalnost, točnost in sposobnost empatije. Sodniki morajo biti tudi sposobni podrobno analizirati očitano kaznivo dejanje ter se znati postaviti v vlogo obtoženca. Tako ne zadostuje le gola teoretična obdelava primera, ampak je potrebno razumeti vse dejavnike storilčeve volje ter morebitni namen storitve dejanja.

Sodnikova naloga je, da s pomočjo zastavljenih pravil in predpisanih pravil odloči o krivdi obtožencev. Ta pravila so vnaprej zapisana oziroma določena v različnih pravnih aktih, vendar imajo sodniki na voljo še prostor za lastni razmislek in avtonomno presojo.36 Sistemi umetne inteligence, ki bi delovali podobno kot deluje sodnik, bi morali vsebovati vse navedene sposobnosti človeškega sodnika, torej ne zgolj zmožnosti teoretične obdelave podatkov, temveč zmožnost odločanja z visoko razumsko analizo. Za sojenje ne obstajajo objektivna merila ter pravila, s pomočjo katerih bi sodnik lahko enostavno odločil v primeru. Sodniku pri ugotovitvi dejanskega stanja pomagajo poleg širokega teoretičnega znanja tudi večletne pravne in življenjske izkušnje.

4.2 Faze uporabe umetne inteligence v kazenskem postopku
Umetna inteligenc se torej v kazenskem postopku lahko uporablja v različnih fazah. Postopek lahko razdelimo v tri dele in sicer: pred sojenjem, sojenje ter po sojenju. V vsaki od omenjenih faz postopka se sprejemajo različne, za posameznika pomembne odločitve.

36 Pavčnik, Teorija prava (2011), str 269-271
4.2.1 Pred sojenjem

V Kenutckyu tako statistično 17 % obtožencev, ki jim je odobrena varščina, krši od sodišča naložene obveznosti. Da bi ugotovili uspešnost napovedi sistema umetne inteligence so znanstveniki algoritme konstruirali z vzorcem sestavljenim iz 1,36 milijonov primerov. Ti algoritmi so v povprečju z 20 % večjo verjetnostjo identificirali in določili posameznike, ki ne kršijo obveznosti izhajajočih iz varščine. Statistično gledano iz podatkov izhaja, da je sistem umetne inteligence bolj uspešen pri določanju posameznikov, ki jim je odobrena varščina, kot človeški sodnik. Vprašanje pa je ali bi algoritem v tem primeru deloval boljše kot človeški sodnik ali pa se je sodnik zavedal tveganja odobritve varščine, vendar je upošteval faktorje (otroci, družina, služba), ki se mu zdijo pomembnejši od tega, ali bo posameznik zagotovo prišel na sodišče. Sistemi umetne inteligence še niso sposobni upoštevati vseh dejavnikov, ki so lahko relevantni za določitev varščine, saj se osredotočijo le na tiste za katere so programirani.

4.2.2 Sojenje

V fazi sojenja sodišče opravlja več procesnih opravil. Algoritmi bodo sodnikom lahko predlagali sodno prakso, relevantne zakone ter dajali različne ocene. V Ameriki so se ocene tveganja začele uporabljati že pred nastopom informacijske dobe. Namen ocene tveganja je, da tistim posameznikom, ki za družbo predstavljajo nizko tveganje izrečemo nižje oziroma pogojne kazni, tisti, ki pa za družbo predstavljajo visoko tveganja pa dobijo višje kazni. S

37 Zakon o kazenskem postopku (ZKP), Ur. 1. RS, št. 22/19, 192. člen
38 Arnold Foundation je organizacija, ki se zavzema nuditi svetu čim več priložnosti in čim manj krivic
40 Završnik, Algorithmic crime control (2018), str. 144
pomočjo algoritmov umetne inteligence bi se naj ocene tveganj izboljšale, saj bi sposobnosti umetne inteligence pomagale pri odločitvah o posameznikih.41

4.2.3 Po sojenju
Obsojenec ima možnost predčasnega ali pogojnega odpusta iz zavoda za prestajanje kazni. Pogojno je lahko odpuščen, če je utemeljeno pričakovati, da bo predčasni odpust izboljšal ocene tveganj, saj bi sposobnosti umetne inteligence pomagale pri odločitvah o posameznikih.42

Za pogojni predčasni odpust je pomembno oceniti obsojence. Glavno vprašanje pri odločanju o pogojnem odpustu je, ali je varno izpustiti posameznika nazaj v družbo.43 Psihologi analizirajo obsojence in podajo mnenje o možnosti ponovne vključitve v družbo. Pokazale so se tudi pomanjkljivosti takšnih analiz, saj so se psihiologi velikokrat zanašali na svojo intuicijo. Zaradi pomanjkljivosti izhajajočih iz psiholoških analiz, so se v Ameriki začeli pretežno zanašati na statistične podatke za ocene tveganja obsojencev. Na podlagi teh podatkov se izda ocena tveganja, ki obsojenec razvrsti v različne skupine tveganja: nizki nivo tveganja, srednji nivo tveganja ter visoki nivo tveganja. V zvezi državi Philadephia v Ameriki za odločitev o pogojnemu odpustu uporabljajo algoritme, ki upoštevajo še več faktorjev, kot so spol, starost, stalni naslov, preteklo kaznovanje.44

Algoretim, ki bo prisoten v katerikoli fazi kazenskega postopka bo teoretično v nekaterih dejavnikih lahko boljši od sodnika, saj bo pri svojem odločanju imel možnost biti popolnoma objektiven.

4.3 Objektivnost
Vsak posameznik je individualno bitje, ki subjektivno doživlja svojo okolico. To pomeni, da glede na svoje življenjsko stanje, izkušnje, karakterne lastnosti in druge dejavnike določeno situacijo dojema specifično. Kljub poskusom biti objektiven, človek subjektivnega dojemanja ne more izklopi. Človeška subjektivnost je faktor zaradi katerega imamo ljudje o stvareh različno mnenje in je posledica različnega čustvenega dojemanja. Optimalen sodnik naj bi bil popolnoma nepripranski, kar narekujejo tudi različni sodni in etični kodeksi. Vendar je takšno stanje nemogoče doseči.45 Shaman opisuje sodniško nepripransko delavnico kot ideal, ki ga sodniki

41 Završnik, Algorithmic crime control (2018), str. 145
42 Kazenski zakonik (KZ-1), Ur. 1.RS, št. 50/12, 88. člen
43 Završnik, Algorithmic crime control (2018), str. 145
44 Završnik, Algorithmic crime control (2018), str. 146
45 Plesničar, Šugman Stubbs, Subjecivity, algorithms, and the courtroom (2018), str. 156
nikoli ne morejo v celoti doseči, saj ljudje pridejo na obravnavo s svojimi občutki, znanjem in prepričanjem, ki jih ni mogoče izklopite. Sojenje je proces tehtanje vrednot in upoštevanje rezultatov posameznega sodnega primera v odnosu na družbene vrednote. Vrednote pa je sposoben imeti samo človek.

4.3.1 Popolna objektivnost algoritma

Popolno objektivnost sodnikov bi bilo možno doseči s pomočjo uporabe tehnologije umetne inteligence in velikih podatkov. S pomočjo algoritmov lahko dosežemo odločitve, ki temeljijo na objektivnosti, resničnosti ter točnosti. To dosežemo s tem, da imajo algoritmi na razpolago velike količine podatkov preteklih sodb, algoritmi pa s pomočjo globokega učenja izločijo človeško subjektivnost. Prednost takšnih sistemov je, da navzven deluje bolj pravično, saj so odločitve, ki jih sprejema popolnoma objektivne. Objektivnost bi lahko okrepila zaupanje v kazensko sodni sistem. Za doseg omenjene objektivnosti ter pravilnosti je pomembno, da izberemo pravilne podatke in relevantne dejavnike. Algoritmem bi tako lahko dosegel za človeka nemogočo objektivnost.

4.3.2 Ali res želimo sodnika, ki je popolnoma objektiven?

Sodnikovo odločanje je sestavljeno tako iz racionalnega razmišljanja kot tudi njegove intuicije. Za odločitev mora tehtati med enakostjo, ki pravi, da je vse primere potrebno obravnavati enako

47 Plesničar, Šugman Stubbs, Subjectivity, algorithms, and the courtroom (2018), str. 156
48 Plesničar, Šugman Stubbs, Subjectivity, algorithms, and the courtroom (2018), str. 166
49 Roberts, Plesničar, Trust and legitimacy in criminal justice (2015), str. 33-51
50 Plesničar, Šugman Stubbs, Subjectivity, algorithms, and the courtroom (2018), str. 158
51 Plesničar, Šugman Stubbs, Subjectivity, algorithms, and the courtroom (2018), str. 157
ter individualizacijo primerov oziroma prilagajanje kazni okoliščinam kaznivega dejanja. Naslednje vprašanje je tudi, koliko diskrecijske pravice se prepušča sodniku pri njegovih odločitvah. Preveč diskrecije lahko dovoli sodniku, da je prekomerno subjektiven, kar vodi do prekomerne samovolje in razlikovanja. Premalo diskrecije pa sodniku ne dovoli, biti subjektiven kot tudi individualizirati kazni. 52

Idea o sodniku, ki odloča popolnoma objektivno je na prvi pogled privlačna, saj v posamezniku zbudi zaupanje v sodni sistem. Ta sodnik bo uporabil pravna pravila in jih prenesel na določeni primer. S tem bodo vsi primeri obravnavani enako. Vendar pa bi v primeru sodnika, ki je popolnoma objektiven, izgubili pozitivno subjektivnost sodnika. Ta subjektivnost sodniku omogoča individualizacijo primera, saj lahko glede na dejstva primera s svojo diskrecijsko pravico spodbuja vrednote našega pravnega sistema. Optimalen sodnik tako ni tisti, ki je popolnoma objektiven, ampak tisti, na katerega vplivajo tudi lastne subjektivne izkušnje in dojemanje. Problem, ki se pojavlja v obliki negativne subjektivnosti sodnikov, se lahko reši z izobraževanj, nadzorom, transparentnostjo. Povzamemo lahko, da stremimo k odpravi negativne subjektivnosti sodnikov in ne popolni objektivnosti. Poleg problematike objektivnosti moramo pri uporabi algoritmov umetne inteligence v sodstvu paziti na to, da iz podatkov, ki jih algoritem uporablja za učenje (sodbe, pravni viri, zakoni in druga pisanja), ne prenesemo človeških predsodkov.

4.4 Prenašanje človeških predsodkov v sisteme umetne inteligence

4.4.1 Uvod
Algoritem umetne inteligence, ki bi predstavljal sodnika bo le-tega moral posnemati. S pomočjo strojnega učenja se algoritmi umetne inteligence samostojno učijo iz različnih podatkovnih baz. Iz teh podatkov se vzpostavi vzorec dojemanja, ki ga lahko uporabimo za odločanje o ljudeh in predmetih, ki niso vključeni v bazah podatkov. Ker pa lahko algoritmi o podobnih ljudeh in primerih odločijo različno, se postavi vprašanje, zakaj prihaja do teh razlik. Nekateri algoritmi lahko celo imitirajo oziroma potencirajo te razlike pri odločanju. 53 Primer takšnih predsodkov v algoritmov je avtomatska ocena tveganja, ki jih delajo v Ameriki. Ti algoritmi nesorazmerno razvrstijo nekatere skupine ljudi v višjo stopnjo tveganja in jim posledično izrečijo višje kazni. Pristranskost algoritmov torej sistematično manj ugodno razvršča posameznike določenih

52 Plesničar, Šugman Stubbs, Subjectivity, algorithms, and the courtroom (2018), str. 162
53 Chodosh, Sara. “Courts use algorithms to help determine sentencing, but random people get the same results.” URL: https://www.popsci.com/recidivism-algorithm-random-bias (20.maj 2019)
skupin. Predsodki v algoritmih lahko izhajajo iz nepopolnih ali nereprezentativnih podatkov, oziroma vhodni podatki odražajo zgodovinsko pogojene neenakosti. Če delovanje algoritmov ne preverjamo in analiziramo, lahko vodijo do odločitev, ki imajo različne neenakopravne vplive na določene skupine ljudi, čeprav programerji algoritmov niso imeli takšnega namena.54 V naslednjem poglavju bomo predstavili primere predsodkov, ki so se pojavili z uvedbo sistemov umetne inteligence na različnih področjih. Primeri ponazarjajo predsodke, ki so se razvili zaradi nepopolnih podatkov, napačne uporabe podatkov ali zgodovinsko pogojene pristranskosti.

4.4.2 Primeri predsodkov algoritmov

4.4.2.1 Predsodki pri zaposlovanju

Pri spletnem trgovcu Amazonu med zaposlenimi prevladuje kar 60 % moških in ti zavzamejo kar 74% vodstvenih položajev. Prenehali so uporabljati algoritem za podporo zaposlovanja, ker so odkrili predsodke pri izbiri spola pri zaposlenih. Podatki, ki so jih programerji uporabili za izdelavo algoritma so izhajali iz življenjepisov predloženih Amazonu v zadnjem desetletju. Večina teh življenjepisov je bilo oddanih od belih moških oseb. Algoritem so naučili prepoznati besedne vzorce v življenjepisih, ki ustrezajo že zaposlenim delavcem. Rezultat tega je bil, da je algoritem slabše ocenil življenjepise, na katerih so se pojavljale besede ženska.55

4.4.2.2 Predsodki v besednih zvezech

Raziskovalci univerze Princeton so s pomočjo umetne inteligence analizirali 2.2 milijona besednih zvez. Ugotovili so, da je evropska imena dojemajo kot prijetnejša v primerjavi s tistimi od afroameričanov in da sta besedi ženska in dekle pogosteje povezani z umetnostjo, moška imena pa z matematiko in znanostjo. Algoritem se je predsodkov naučil iz že obstoječih podatkov, ki so predhodno vsebovali človeško pristranskost.56

4.4.2.3 Predsodki v kazenskemu sistemu
Po poročilu ProPublica je algoritem, ki ga za oceno tveganja uporabljajo sodniki in odloča ali naj bodo obdolženci pridržani ali izpuščeni do sojenja, pristranski do temnopolitih obdolžencev. Algoritem dodeli oceno tveganja, da bo obdolženi storil kaznivo dejanje, pri čemer se opira na obsežne podatke, ki so na voljo. V primerjavi z belci, ki imajo enako verjetnost, da bodo ponovno kršili zakon, so temnopolti obdolženci po ocenah algoritma dosegli višjo verjetnost kršitve zakona ter se uvrstili na višji nivo ocene tveganja.57

4.4.3 Vzroki za nastanek predsodkov
Iz teh primerov izhaja, da predsodki algoritmov umetne inteligence izhajajo iz človeškega faktorja. Informacije o človeških predsodkih, ki bi lahko vplivali na učenje algoritmov izhaja iz dveh glavnih razlogov in sicer predsodki, ki so se razvili skozi zgodovino in predsodki, ki izhajajo iz nepopolnih podatkov za učenje sistema.

4.4.3.1 Zgodovinsko pogojeni predsodki
Zgodovinski človeški predsodki izhajajo iz globoko zakoreninjenih predsodkov do določenih skupin. Ta predsodek se lahko v sistemih umetne inteligence celo okrepi. V primeru algoritma COMPAS je na podlagi zgodovinskih okoliščin in prisotnega rasизма dodelil višjo verjetnost kaznivih dejanj iz skupine temnopolitih obdolžencev. Ta predsodek izhaja iz določene stopnje rasизма okolice, razlikah v policijskih praksah ter neenakostih v kazenskem pravosodju. Podatki, ki jih uporablja algoritem, že vsebujejo omenjene predsodke. Sodbe, ki bodo sprejete na podlagi takšnih ocen, bodo enako napačne kot bi jih sprejemali ljudje s predsodki. Algoritem za zaposlovanje na Amazonu je razkril podobno usmeritev, ko je bil moški spol prevladujoče merilo, ženske pa so bile zapostavljene. Človeški predsodki se tako lahko prenesejo v algoritme umetne inteligence v vseh stopnjah razvoja in izvajanja ter generirajo pristranske odločitve. 58

4.4.3.2 Nepopolni ali nereprezentativni podatki o usposabljanju
Nepopolni podatki, ki jih procesirajo algoritmi, so lahko vzrok za nastanek predsodkov v algoritmih. Če so podatki, ki jih uporabljajo algoritmi bolj nesorazmerni za nekatere skupine

ljudi kot za druge, so napovedi algoritmov slabše za skupine, ki niso sorazmerno zastopane. Na primer v Buolamwinijevih eksperimentih za analizo obraza je prišlo do slabega prepoznavanja temnejših obrazov, kar je bila posledica statistično premajhne prisotnosti temnopolih ljudi v podatkih. Prav tako je pomanjkanje raznolikosti osebnih značajev pri programerjih, ki oblikujejo vzorec podatkov, lahko vzrok za nediskriminatorno zastopanost določene skupine v podatkih.59 Nasprotno je lahko problem tudi prevelika količina podatkov ali prevelika zastopanost določene skupine. Raziskovalci s pravne fakultete v Georgetownu so ugotovili, da je v mrežah za prepoznavanje obrazov, ki jih uporabljajo organi kazenskega pregona, približno 117 milijonov slik obrazov. Ker so temnopoliti obdolženci prekomerno zastopani v policajskih fotografijah, so njihovi obrazi imeli višjo verjetnost za lažno ujemanje, kar je spodbujalo pristranskost.60

4.4.4 Smernice za prepoznavo predsodkov

Da bi preprečili predsodke v sistemih umetne inteligence, je inštitut AI Now iz New Yorka predlagal smernice, ki državnim institucijam pomaga pri prepoznavi predsodkov. Smernice so sestavljene iz treh delov. V prvem koraku podjetje, ki razvija sistem umetne inteligence, s pomočjo svetovalcev naredi seznam možnih pristranskosti. V primeru, da se predsodki pojavijo, je razvijalec v drugem koraku dolžan obvestiti ustrezne skupine ljudi in jim dopustiti možnost odgovora. V tretjem koraku se posameznikom, ki sumijo, da so jim bile kršene pravice dopusti pritožiti na odločitve algoritmov.61 S pomočjo teh smernic naj bi se zmanjšal negativni vpliv na posameznike, o katerih odloča sistem umetne inteligence. Takšne smernice so dober začetek, vendar ne zadostujejo standardom za zaščito pravic posameznikov, saj so sistemi umetne inteligence preveč enostavno in včasih tudi naključno izpostavljeni negativnim zunanjim vplivom.

Kot primer lahko navedemo algoritem umetne inteligence z imenom Tay, ki ga je razvilo podjetje Microsoft in mu dovolilo, da se na družbenem omrežju Twitter uči in komunicira z

drugimi ljudmi. Projekt so morali ustaviti v roku 16 ur, saj so ga drugi uporabniki preko svoje komunikacije radikalizirali in spremenili v rasista.62 V tem primeru vidimo, kako hitro se lahko onesnaži delovanje sistema umetne inteligence ter ga spremeni v družbeno nesprejemljiv dejavnik.

4.4.5 Možnost prepoznave predsodkov že pred samim razvojem sistema umetne inteligence

Ustvarjalci samega sistema lahko zaznajo morebitne predsodke sistema že ob samem razvoju. Kot samoregulativni pripomoček lahko ustvarjalci sistema uporabljajo naslednja vprašanja, s katerimi ugotovijo potencialne predsodke63:

Kakšna bo posledica avtomatskega odločanja?

Namen je ugotoviti, katera bo skupina ljudi, za katere bo imel algoritrem največje posledice. Vprašati se moramo tudi, ali imajo na razpolago ustrezen podatek za sprejemanje pravilnih napovedi in odločitev, če so podatki dovolj raznoliki in zanesljivi, kakšen je življenjski cikel podatkov, ki jih uporablja algoritrem, ter katere skupine bi lahko bile prizadete, ko pride do napak v podatkih oziroma do neenake obravnavne.

Kako bodo prepoznani potencialni predsodki?

Vprašati se moramo, kako in kdaj bo algoritrem preizkušen in kdo bo ga testiral. Pomembno je, kakšen bo prag za merjenje in popravljanje predsodkov v algoritmu, še posebej če se nanaša na zaščitene skupine ljudi.

Kakšni so nameni upravljalca za razvoj algoritma?

Kaj bomo pridobili pri razvoju algoritma? Kakšne so morebitne slabe posledice algoritma in kako jih bomo opazili? Kako odpri bomo naredili postopek načrtovanja algoritma za notranje partnerje, uporabnike in stranke? Kaj bomo naredili, če predvidevamo, da bo prišlo do slabih rezultatov, povezanih z razvojem in uporabo algoritma?

Kako sodelujejo druge zainteresirane stranke?

Kakšno možnost dajanja povratnih informacij imajo notranji partnerji ter stranke? Ali je pri oblikovanju algoritma sodelovala organizacija civilne družbe?

Ali je pri načrtovanju in izvedbi sistema upoštevana raznolikost?

S pomočjo teh vprašanj lahko programerji določijo težave, ki bi lahko vplivale na diskriminatorno delovanje sistemov umetne inteligence. Tako se lahko osredotočijo na to, da jih rešijo že ob samem vzpostavljanju sistema in vnaprej zmanjšajo potencialne negativne posledice.

Upravljalci ter ustvarjalci sistemov umetne inteligence morajo tako aktivno preverjati in nadzorovati delovanje umetne inteligence ter se zavedati morebitnih posledic, ki lahko nastanejo. Stalni nadzor, testiranje in analiza vpliva omogočijo odgovornim subjektom, da preprečijo škodljive posledice še preden te nastanejo. V skupino subjektov, ki so odgovorni za nediskriminatorno delovanje sistema umetne inteligence, spadajo upravljalci, ustvarjalci, računalniški programerji, vlada in drugi, ki se ukvarjajo s panogo umetne inteligence. Poleg pristransnosti in subjektivnosti moramo ob razvoju sistema umetne inteligence biti pozorni na vprašanje zavesti sodnika.

4.5 Primer uprabe IBM-ovega sistema umetne inteligence Watson v zdravstvu

IBM (International Bussines Machines corporation) je eno izmed svetovno vodilnih podjetij v informacijski tehnologiji. Razvili so operativno uspešen sistem umetne inteligence z imenom Watson, ki ga lahko apliciramo na različna področja uporabe (medicina, kemija, fizika, pravne znanosti, matematika, …).64

Ilustrativen primer uprabe sistema Watson je svetovanje zdravnikom pri prepoznavanju različnih bolezn. Sistem prepozna bolezen in predlaga najbolj optimalno vrsto zdravljenja.

64 Watson URL: https://www.ibm.com/watson/about (22. marec 2019)
Zdravnik v sistem vnese podatke pacienta, ta z določeno verjetnostjo prepozna vrsto bolezni (npr. z 80 % za določeno vrsto raka) ter predlaga ustrezno zdravljenje. Prav tako izpiše zdravniku vire, iz katerih je sistem umetne inteligence črpal, povzel in predlagal te podporne informacije. Zdravnik se na podlagi teh informacij lahko lažje odloči, katera vrsta zdravljenja je najbolj optimalna za posameznika. Kot vidimo se algoritmi umetne inteligence že uporabljajo v zdravstvu in sicer v primerih ko se odloča o življenju pacienta. Celoten proces odločanja je še vedno na človeku vendar mu umetna inteligenc počaga pri sprejetju pravilne odločitve. Zdravnik uporablja algoritme kot vir informacij, ki ga dopolni s svojo presojo in večletnimi izkušnjami. Umetna inteligencia torej že dandanes posredno odloča v praktičnih primerih o načinih zdravljenja pacientov. Tak primer lahko prenesemo v sodstvo, saj bo umetna inteligencia enako kot pri zdravniku, sodniku pomagala pri sprejemamu odločitev o posameznikih.
5 Umetna inteligencia in njen vpliv na človekove pravice v kazenskem pravu

5.1 Uvod

Umetna inteligencia se razvija z osnovnim ciljem avtomatizacije odločanja na različnih področjih. Razvijalci si prizadevajo rešiti probleme, ki izhajajo iz človeške dejavnosti in njihove vključenosti v delovanje ustaljenih institucij. V kazenskem pravu so se skozi stoletja razvile pravice, ki pripadajo obtožencu v kazenskem postopku. Te pravice vključujejo domnevo nedolžnost, načelo pravičnosti, pravico do poštenega sojenja itd., ki jih v moderni družbi dojemamo kot osnovne človekove pravice. Kljub temu trenutno ne obstaja pravni sistem, ki bi zagotavljal popolno spoštovanje vseh pravic obtožencev. Zaradi pomanjkljivosti, ki se pojavljajo v ustaljenih sistemih, si razvijalci sistemov umetne inteligence prizadevajo načrtovati takšne rešitve, ki bi čim več takšnih pomanjkljivosti lahko odpravile.65

5.2 Problematika vpliva sistema umetne inteligence na človekove pravice v kazenskem postopku

Uvajanje sistema umetne inteligence ima lahko tako pozitivne kot tudi negativne vplive na uživanje pravic posameznika v kazenskem postopku. Takšni pozitivni in negativni vplivi niso enakomerno porazdeljeni v družbi. Tako nekateri posamezniki pridobijo večje koristi, kar pa pomeni, da znajo biti drugi prikrajšani za nivo koristi. Lahko pride celo do pojava diskriminacije. V primeru uporabe avtomatiziranega sistema točkovanja tveganja v kazenskem postopku se lahko tako zmanjša število neupravičeno priprtih osumljencev kaznivih dejanj. Hkrati lahko takšen sistem diskriminirana pripadnike manjšin, kar vodi do povečanja števila znotraj priprtih osumljencev kaznivega dejanja.66

Umetna inteligencia prinaša tveganje, da ohrani ter v določenih primerih tudi okrepi, obstoječe družbene predodke in posledično vpliva na pravico do enakosti. Takšni odkloni so posledica pretirane racionalizacije algoritmov, ki ne upoštevajo širšega konteksta morebitnih posledic. Sistemi umetne inteligence so sposobni ponavljanja vzorcev odločanja, ki jih črpajo iz razpoložljivih podatkov, hkrati pa lahko ohranjajo obstoječo pristranskost, ki je posledica vhodnih podatkov. Tako umetna inteligencia tudi ohranja pretekle vzorce človeškega odločanja

65 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 7
ter tudi obstoječe družbene predsodke. Za razliko od ljudi, ki imajo možnost sprejemati odločitev in uveljavljati svobodno voljo in tako ustvarjati moralni okvir, umetna inteligencia te možnosti zagotovo ne bo imela. Potrebno je zagotavljati stalni nadzor razvijalcev, ki so odgovorni za načrtovanje in delovanje takšnih sistemov – s tem se lahko vsaj delno zagotovi, da so rezultati v skladu z razvijajočimi se pojmi pravičnosti.

Avtomatizacija odločanja s pomočjo umetne inteligence z ustreznim projektiranjem sistemov torej ponuja možnost korekcij socialnih neskladij, ki se lahko doseže z usmeritvami po odpravljanju človeških predsodkov v procesih odločanja. Uveljaviti je potrebno tudi pozitivno diskriminacijo, ki uravnava distribucijo človekovih pravic in zaščiti manjšine. Težave se pojavijo, ko sistemi razvoja umetne inteligence niso zadostno nadzorovani ali pa jih razvija umetna inteligencija avtonomno, kar lahko privede do nesporazumnih vplivov na družbo in posledično tudi pravičnost.67

5.3 Potencialne omejitve nastanka sodne prakse zaradi uporabe sistema umetne inteligence

Sodna praksa v Sloveniji ni formalen vir prava, temveč predstavlja sekundarni vir prava, ki zagotavlja enotno uporabo formalnih virov. Namen sodišč je polnjenje vsebine v okvir prava z njegovo konkretizacijo in razlago. V slovenskem kontinentalnem pravnem sistemu sodišča niso vezana na odločbe višjih sodišč izven obsega konkretnega primera. Po Zakonu o sodiščih so zavezujoča le (načelna) pravna mnenja vrhovnega sodišča in še to zgolj za senate vrhovnega sodišča, ki so sprejeli določeno mnenje.68

S sodno prakso se torej ustvarja, razlaga ter dopolnjuje obstoječe pravo. Sposobnost sodnikov, da razsodijo samostojno in drugače, kot so do takrat razsodili drugi sodniki, predstavlja obstoj svobodne volje sodnika, ki jim tako omogoča sprejeti odločitve izven dotedanje sodne prakse. Umetna inteligencija zaradi svoje zasnove tega ni sposobna. Uči se iz obstoječih podatkov ter s pomočjo njih tvori ugotovitve. Te ugotovitve so zaradi načina delovanja sistema dokaj statične, kar pomeni, da bi sistem umetne inteligence brez človeškega prispevka težko odločil drugače. Torej bi v primeru nadomestila sodnikov s sistemom umetne inteligence trpel pravni sistem, saj bi tako nadomestilo oviralo razvoj sodne prakse.

67 Kim, Bavitz, Krishnahurthy, Hiligoss, Rasos, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 18
68 Pavčnik, Teorija prava (2011), str 49
5.4 Posledice sistema umetne inteligence kot sodnika in pravica do pritožbe

Pritožba je pravni institut, ki je urejen v ustavi in pravi: »Vsakomur je zagotovljena pravica do pritožbe ali drugega pravnega sredstva proti odločbam sodišč in drugih državnih organov, organov lokalnih skupnosti in nosilcev javnih pooblastil, s katerimi ti odločajo o njegovih pravicah, dolžnostih ali pravnih interesih.« Učinkuje tako v nadzorni kot korektivni funkciji nižjim stopnjam. Osnovni namen je varovati tako materialno kot tudi formalno pravilnost postopka.

Pri uvedbi umetne inteligence v pravnih zadevah se pojavlja težava, saj bi sodnika nadomestil algoritem, ki zaradi svoje zasnovne ob enakih danih podatkih, lahko le vedno enako razsodi. Algoritem bi zaradi narave svojega delovanja na višji stopnji torej odločil enako kot na nižji stopnji. S tem bi eliminirali samo bistvo večstopenjske organizacije sodstva, saj tako večstopenjsko odločanje ne bi bilo več smiselno.

Ob vpeljavi sistemov umetne inteligence bi bil za edini način korekcije sprejetih odločitev nujen obstoj človeških sodnikov, ki bi v primeru pritožbe preverjali odločitve algoritmov ter jih tudi ustrezno popravili. Na ta način bi lahko z dodatnimi podatki in procesi tudi omogočili učenje sistema umetne inteligence, saj bi se s takšnimi sistemi lahko sproti popravljali in izboljševali.

5.5 Vpliv sistema umetne inteligence na pravico do zasebnosti posameznika

69 URS. 25. člen
podatki in tako identificira karakterne lastnosti posameznika, brez tega da bi identificirala posameznika samega.

5.5.1 Ocena tveganja in vpliv na domnevo nedolžnosti

Domneva nedolžnosti je za obtožence ena najpomembnejših institutov v kazenskem postopku. Vsak, ki je obdolžen kaznivega dejanja velja za nedolžnega, dokler njegova krivda

S tem obvarujemo obdolžence pred predhodnim obsojanjem iz strani policije, sodišča ter drugih akterjev v kazenskem postopku. Domneva ščiti najbolj ogrožene skupine o katerih v družbi obstajajo negativni predsodki, ki bi jih skozi cel postopek postavili v slabši položaj. V zadnjih letih je vedno več držav začelo uporabljati algoritme za ocenjevanje tveganja v svojem kazenskem sistemu. Ta ocene tveganja lahko imajo negativne posledice na domnevo nedolžnosti obtoženca, saj ga ocenjujejo preden mu je dokazana krivda.

5.5.1.1 Umetna inteligence in ocenjevanje o tveganosti posameznika

Najpogostejši sistem, ki uporablja algoritme ter globoko učenje v sodstvu v Ameriki, je bil obtožen prevzemanja rasne pristranskosti svojih ustvarjalcev. Raziskava neodvisne organizacije ProPublica je pokazala, da je sistem COMPAS, ki ga uporabljajo nekatera ameriška sodišča pri določanju varščine in odločanju o kazni, napačno razvrstil afroameriške obtožence kot »zelo tvegane«, saj jim je pripisal kar dvakrat višjo stopnjo tveganj od belcev, kljub temu, da je imel enako stopnjo natančnosti pri napovedi, ali bodo posamezniki iz obeh rasnih skupin ponovili kaznivo dejanje. Sistem COMPAS je torej razvrstil 45 % afroameriških obsojencev v skupino tistih, ki imajo visoko verjetnost za ponovitev kaznivega dejanja v primerjavi z belci, ki jim je sistem pripisal le 23 % možnosti ponovitve kaznivega dejanja ob istih pogojih ter izvršenih kaznivih dejanjih. Po objavi ProPublice se je pojavilo vprašanje, ali je sploh možno razviti algoritme, ki obravnavajo posameznike, ki pripadajo različnim skupinam, enako pravično. Iz rezultatov, do katerih je prišla ProPublica pri raziskovanju sistema COMPAS, lahko sklepamo, da obstaja tveganje tudi za druge podobne algoritme, ki se bodo uporabljali v sodstvu glede pravic manjšin in diskriminacije.

70 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 18
71 ZKP, 3. člen
Pri manjšinah se pojavlja pomembno vprašanje glede obstoja sistematičnih vzorcev pristranskosti, ki izhajajo iz takšnih podatkov zaradi nesorazmernega policijskega nadzora nad določenimi manjšinskimi skupnostmi. Posledično so takšne manjšinske skupnosti preveč zastopane v podatkovnih bazah, ki jih uporabljamo za usposabljanje sistema umetne inteligence. Tako algoritem preceniti pomembnost faktorja rase pri ocenjevanju tveganja posameznika pri ponovitvi kaznivega dejanja. 73 Pripadniki manjšin so torej postavljeni v slabši položaj preden so sploh obsojeni, saj statistični podatki pravijo, da imajo višjo verjetnost ponovne storitve kaznivega dejanja. Tukaj vidimo problematiko sistemov ocen tveganja, saj je vprašljivo ali res velja domneva nedolžnosti za obdolžence, ki pripadajo manjšinskim skupinam in so zato vnaprej postavljeni v slabši položaj.

5.5.1.2 Problematica komercialnih razvijalcev sistemov tveganja

Pojavlja se vprašanje glede izvora programske opreme za oceno tveganja, saj to opremo razvijajo podjetja iz komercialnih razlogov, programska kodo ter podatke za učenje algoritmov pa klasificirajo kot poslovno skrivnost. Tajnost, ki obdaja delovanje teh orodij za oceno tveganja, ima škodljive učinke na pravice obtožencev za kazniva dejanja, saj se ne morejo učinkovito braniti proti obsodi sistema. Situacija se poslabša, ko uporabljajo sistemi za oceno tveganja tehnike globokega učenja, saj rezultati iz teh tehnik pogosto niso ponovljivi ali razložljivi v kakršnemkoli logičnem pomenu.74

5.5.2 Primer uporabe ocene tveganja COMPAS v primeru State v. Loomis

V začetku leta 2013 je zvezna država Wisconsin obtožila Erica Loomisa petih kaznivih dejanj, povezanimi s streljanjem v La Crosse. Loomis je zanikal, da je sodeloval v streljanju, vendar je priznal, da je vozil isti avtomobil, ki je bil vpleten v streljanje. Loomis je priznal krivdo za dve manj strogi obtožbi in sicer poskus ubezpičit prometnemu uslužbencu ter upravljanje motornega vozila brez lastnikove privolitve. Pri pripravi izreka kazni, je uslužbenec lokalnega oddelka za upravljanje in ravnanje z obtoženci v Wisconsinu napisal PSI75, ki je vključeval oceno tveganja COMPAS. Ocene podjetja COMPAS ocenjujejo tveganje ponovne izvršitve kaznivega dejanja na podlagi intervjujev s storilcem in kriminalne zgodovine storilca. Delovanje sistema

73 Kim, Bavitz, Krishnahurthy, Hiligoss, Raso, Artificial Intelligence & Human Rights: Opportunities & Risks (2018), str. 24
75 PSI so poročila o preiskavah, ki običajno vključujejo osnovne podatke o storilcih kaznivih dejanj
COMPAS je poslovna skrivnost razvijalcev, zato se sodišču predloži le ocena tveganja za ponovitev izvršitve kaznivega dejanja. Sodišče se je ob izreku kazni sklicevalo na oceno podjetja COMPAS in deloma na podlagi te ocene Loomisa obsodilo na 6 let zapora in 5 let pogojnega zapora.76 Primer je pomemben, ker je en med redkimi v katerem se je odločalo o pravilnosti uporabe sistemov umetne inteligence v sodstvu. Sodniki višjega sodišča so pritrdbili prvostopenjski sodbi ter poudarili, da se ocene tveganj lahko uporabljajo v sodstvu vendar odločitve sodnikov ne smejo temeljiti le na teh.

76 Loomis v. Wisconsin, 881 N.W.2d 749 (Wis. 2016)
6 Smernice za pravno ureditev sistemov umetne inteligence

Problematike razvoja novih tehnologij, kot je umetna inteligencia, se zavedajo institucije po vsem svetu. Kljub temu, da je cilj novih tehnologij reševanje obstoječih problemov, morajo razvijalci ter zakonodajalci biti pozorni na posledice, ki jih prinašajo. V prihodnosti bo imela umetna inteligencia velik vpliv na posameznika v vseh družbenih okoljih in zato je nujno potrebno to področje urediti na premišljen način. Zaradi zavedanja potencialnih problemov, ki lahko nastanejo, so tako Svet EU kot tudi The public voice sprejeli temeljna načela za delovanje sistemov umetne inteligence.

6.1 Evropska etična listina o uporabi umetne inteligence v pravosodnem sistemu

Svet EU je izdal Evropsko etično listino o uporabi umetne inteligence v pravosodnem sistemu. V listini je navedeni pet ključnih načel za etično uporabo umetne inteligence za Evropsko Unijo in tudi Slovenijo je to najpomembnejši dokument, ki ureja umetno inteligenco v sodstvu. Ta načela naj bi zagotovila etično ter varno uporabo sistemov umetne inteligence.

6.1.1 Načelo spoštovanja temeljnih človekovih pravic.

Namen je zagotoviti, da sta oblikovanje in izvajanje orodij in storitev umetne inteligence združljiva s temeljimi pravicami. Obdelava sodnih odločb in podatkov mora služiti jasnim namenom, ob polnem spoštovanju temeljnih pravic, ki jih zagotavljajo Evropska konvencija o človekovih pravicah (EKČP) in Konvencija o varstvu osebnih podatkov (Konvencija o varstvu posameznikov glede na avtomatsko obdelavo osebnih podatkov, ETS št. 108, kakor je bila spremenjena s CETS, ki spreminja protokol št. 223). Kadar se orodja za umetno inteligenco uporabljajo za reševanje spora ali kot orodje za pomoč pri odločanju v sodni praksi ali za usmerjanje javnosti, je bistveno zagotoviti, da ne ogrožajo jamstva pravice do dostopa do sodnika in pravice do poštenega sojenja (enakost orožja in spoštovanje kontradiktornega postopka). Uporabiti jih je treba tudi ob ustreznem spoštovanju načel pravne države in neodvisnosti sodnikov pri njihovem postopku odločanja. Ob načrtovanju sistema je potrebno dati prednost etiki in človekovim pravicam. Pravila, ki prepovedujejo neposredne ali posredne kršitve temeljnih vrednot, zaščitenih s konvencijami, so vključena že v fazah načrtovanja in učenja sistema.78

77 The public voice je organizacija, ki jo je leta 1996 ustanovil Elektronski informacijski center za zasebnost (EPIC) za spodbujanje sodelovanja javnosti pri odločitvah o prihodnosti interneta
78 European ethical Charter on the use of Artificial Intelligence in judical sysems and their environment, str.8 (2018)
6.1.2 Načela nediskriminacije

Namen je preprečiti razvoj ali okrepitev kakršne koli diskriminacije med posamezniki ali skupinami posameznikov. Glede na sposobnost metod obdelave ki jih prinaša sistem umetne inteligence, da razkrije obstoječo diskriminacijo z združevanjem ali razvrščanjem podatkov, ki se nanašajo na posameznike ali skupine posameznikov, morajo javno in zasebne zainteresirane stranke zagotoviti, da metode ne reproducirajo ali poglobijo takšne diskriminacije in da ne vodijo k determinističnim analizam ali uporabam. Posebno pozornost je potrebno nameniti tako razvojni fazi kot tudi fazi uvajanja, zlasti kadar obdelava temelji neposredno ali posredno na „občutljivih“ podatkih. Ti lahko vključujejo domnevno rasno ali etnično poreklo, socialno-ekonomsko ozadje, politična mnenja, verska ali filozofska prepričanja, članstvo v sindikatih, genetske podatke, biometrične podatke, zdravstvene podatke ali podatke o spolnem življenju ali spolni usmerjenosti. Ko je takšna diskriminacija ugotovljena, je nujno razmisli o korektivnih ukrepih za omejitev ali če je mogoče, nevtralizacijo teh tveganj ter za ozaveščanje zainteresiranih skupin. Za boj proti vsem vrstam diskriminacije naj se spodbuja uporaba strojnega učenja in multidisciplinarnih znanstvenih analiz.79

6.1.3 Načelo kvalitete in varnosti

Načelo navaja, da je pri obdelavi sodnih odločb in podatkov potrebno uporabiti potrjene vire in nematerialne podatke z modeli, zasnovanimi na multidisciplinarnih načinih v varnem tehnološkem okolju.

Ustvarjalci umetne inteligence morajo biti sposobni izkoristiti široko znanje ustreznih strokovnjakov pravosodnega sistema (sodnikov, tožilcev, odvetnikov itd.) in raziskovalcev ali predavateljev na področju prava in družboslovja (ekonomistov, sociologov in filozofov). Ustvariti morajo skupine, ki bodo skrbele za integriteto delovanja umetne inteligence.

Obstoječe etične zaščitne ukrepe morajo projektne skupine nenehno širiti in izboljševati z uporabo povratnih informacij. Vnašanje podatkov v programsko opremo, ki izvaja algoritmem strojnega učenja, mora izhajati iz certificiranih virev in jih ne bi smeli spreminjati, dokler ne bodo dejansko uporabljeni v učnem mehanizmu. Celoten postopek mora biti torej sledljiv, da

79 European ethical Charter on the use of Artificial Intelligence in judical systems and their environment, str.9 (2018)
se zagotovi, da ni prišlo do sprememb, ki bi spremenile vsebino ali pomen odločitve, ki se obravnava.

Da se zagotovi celovitost in varnost sistema, morajo biti ustvarjeni modeli in algoritmi shranjeni in izvedeni v varnem okolju.80

6.1.4 \textbf{Načelo preglednosti, nepristranskosti in pravičnosti:}

Načelo preglednosti, nepristranskosti in pravičnosti pravi, da je potrebno omogočiti dostopnost in razumljivost metod obdelave podatkov ter dovoliti zunanje revizije. Potrebno je vzpostaviti ravnovesje med intelektualno lastnino, metodo obdelave in potrebo po preglednosti (dostop do procesa oblikovanja), nepristranskosti (odsotnost pristranskosti), pravičnosti in intelektualni celovitosti (dajanje prednosti interesom pravice), kadar se uporabljajo sistemi, ki lahko imajo pravne posledice ali lahko pomembno vplivajo na življenje ljudi. Pojasniti je treba, da ti ukrepi veljajo za celotno zasnovno in operativno verigo, saj izbirni postopek ter kakovost in organizacija podatkov neposredno vplivata na fazo učenja.

To lahko dosežemo s popolno tehnično preglednostjo (na primer odprta koda in dokumentacija), ki jo včasih omejuje zaščita poslovnih skrivnosti. Sistem bo potrebno razložiti v jasem in znanem jeziku (da bi opisali, kako se proizvajajo rezultati) s sporočanjem, na primer, narave ponujenih storitev, razvitih orodij, učinkovitosti in tveganj napak. Neodvisni organi ali strokovnjaki bi lahko bili zadolženi za predhodno potrjevanje in revizijo metod obdelave ali za svetovanje. Javni organi bi lahko podelili certifikate, ki jih je treba redno pregledovati.

6.1.5 \textbf{Načelo „pod nadzorom uporabnika“}

Načelo zagotavlja, da so uporabniki obveščeni udeleženci in da nadzorujejo njihove izbire. Avtonomnost uporabnikov je treba povečati in ne omejevati z uporabo orodij in storitev za umetno inteligenco. Strokovnjaki v pravosodnem sistemu morajo biti v vsakem trenutku sposobni pregledati sodne odločbe in podatke, ki se uporabljajo za doseganje rezultatov in ostati neodvisni glede na odločitev, ki jo je sprejela umetna inteligenta v konkretnem primeru. Uporabnik mora biti obveščen v jasem in razumljivem jeziku o tem, ali so rešitve, ki jih ponujajo orodja za umetno inteligenco, zavezujoče za različne razpoložljive možnosti, in imeti

80 European ethical Charter on the use of Artificial Intelligence in judicial systems and their environment, str.10 (2018)
pravico do pravnega svetovanja in pravico do dostopa do sodišča. Prav tako mora biti jasno obveščen o kakršni koli predhodni obravnavi primera z umetno inteligenco pred ali med sodnim postopkom in imeti pravico ugovarjati, tako da lahko njegovo zadevo neposredno obravnava sodišče v smislu člena 6. EKČP.81

6.2 Smernice UGAI

Oktobra 2018 je The Public Voice sprejel univerzalne smernice o umetni inteligenci82, ki opozarjajo na naraščajoče izzive inteligentnih računalniških sistemov in predlagajo konkretna priporočila, ki uokvirjajo razvoj in zasnovano sistemov. Poglavitni namen UGAI je spodbuditi preglednost in odgovornost takšnih sistemov ter zagotoviti, da ljudje obdržijo popoln nadzor nad sistemi, ki jih ustvarjajo. V področje uporabe teh smernic v glavnem spadajo sistemi umetne inteligence, ki bodo vplivali na pravice ljudi. Glavni cilj smernic je preprečiti sistemom umetne inteligence, da bi kakorkoli škodili ljudem.

Namen teh smernic je mednarodno urediti okvire in pravne posledice pri razvoju umetne inteligence, ki jih naj države dosledno upoštevajo pri sprejemanju nacionalnih zakonodaj, da bo razvoj skladen z ostalimi zakonskimi normativi.

Smernice UGAI temeljijo na predhodnem raziskovanju različnih znanstvenih združenj, think tankov, nevladnih in mednarodnih organizacij. Vključujejo elemente uveljavljenega nivoja človekovih pravic, zakonodaje o varstvu podatkov in etične smernice.

UGAI govori o obveznostih institucij in pravicah posameznikov. To izhaja iz artikuliranja poštenih informacijskih praks na področju varstva podatkov. Temeljni cilj smernic je zaščita posameznika. Kot institucije se razumejo javni in zasebni subjekti, ki razvijajo in uporabljajo sisteme umetne inteligence.

Smernice so namenjene kot ogrodje, ki ga je treba vključiti v etične standarde in sprejeti tako v nacionalne zakonodaje kot tudi v mednarodne sporazume.83

81 European ethical Charter on the use of Artificial Intelligence in judicial sysems and their environment, str.11 (2018)
82 UGAI - Universal Guidelines for Artificial Intelligence
83 Universal Guidelines for Artificial Intelligence, URL:https://thepublicvoice.org/ai-universal-guidelines/memo/ (30. marec 2019)
6.2.1 Načelo transparentnosti
Elemente načela transparentnosti najdemo v več sodobnih zakonih o zasebnosti. Taki primeri so ameriški zakon o zasebnosti, direktiva EU o varstvu podatkov, GDPR in konvencija Sveta Evrope. Cilj tega načela je omogočiti neodvisno odgovornost za avtomatizirane odločitve, s poudarkom na pravic pravilnikov, da pozna vzrok za negativno odločitev. V praksi to pomeni, da posameznik morda ne bo mogel razumeti vzroka za odločitev sistema umetne inteligence, vendar bo vedno morala obstajati možnost razlage sprejetih odločitev.

6.2.2 Načelo prednostnega odločanja človeka
Načelo o prednostnem odločanju človeka pravi, da so za avtomatizirano odločanje v prvi vrsti odgovorni posamezniki in ne stroji. Cilj načela je zagotoviti odgovornost za delovanje sistema – torej določiti nekoga, ki bo odgovoren za odločitve umetne inteligence. V nekaterih primerih je nemogoče zahtevati človeško reakcijo, vendar v drugih primerih, ko avtomatizirani sistem ne uspe sprejeti odločitev, je to potrebno razumeti kot zahteva, da odloči človek.

V mnogih primerih, kot je delovanje avtonomnega vozila, ne bi bilo mogoče niti smotrno vstaviti človekove odločitve. Kot primer si predstavljajmo avto, ki se vozi avtonomno in zazna, da se bo zaletel. Avto bo moral v milisekundah odločiti, kako odreagirati, da čim bolj obvaruje potnike kot tudi druge udeležence v prometu. Avto v tem primeru ne bo imel časa voznika opozoriti na problematiko, ki je nastala, ter nato počakati na človeško odločitev v situaciji.

6.2.3 Obveznost identifikacije sistema umetne inteligence
Namen tega načela je obravnavati asimetrijo identifikacije, ki je posledica interakcije med posamezniki in sistemi umetne inteligence. Sistem umetne inteligence običajno ve mnogo o posamezniku, posameznik pa morda sploh ne pozna upravljalca sistema. Načelo nujnosti identifikacije vzpostavi temelje za odgovornost umetne inteligence – ta odgovornost predstavlja jasno identifikacijo sistema umetne inteligence in odgovorne institucije, povezane s sistemom in njegovim upravljanjem.
6.2.4 Načelo pravičnosti
Načelo pravičnosti priznava, da sistemi umetne inteligence lahko sprejemajo odločitve tudi na podlagi določenih predsodkov in diskriminacije, vendar takšne odločitve ne smejo biti nepravične. Sámo vprašanje nepravičnosti je težko opredeliti. Ti predsodki in diskriminacija se prenašajo direktno iz človeka na stroj. Načelo pravičnosti jasno opredeljuje, da ciljni rezultati sistema umetne inteligence niso zadostni pogoji. Vrednotenje pravičnosti je pogosto odvisno od konteksta, vendar načelo pravičnosti jasno navaja, da sama ocena objektivnih izidov ne zadostuje za oceno sistema umetne inteligence. Oceni je potrebno normativne posledice, vključno s tistimi, ki so obstajale že prej ali pa jih sistem umetne inteligence dopolnjuje.89

6.2.5 Obveznost ocenjevanja odgovornosti
Načelo obveznosti ocenjevanja odgovornosti govorí o obveznosti ocenjevanja sistema pred in med njegovim delovanjem oziroma vzpostavitvijo. Namen tega je določiti, ali naj se sistem umetne inteligence sploh vzpostavi. V primeru, da ocena sistema razkrije bistvena tveganja, kot so tista, ki jih navajajo načela v zvezi z javno varnostjo in kibernetsko varnostjo, projekt ne sme napredovati.90

6.2.6 Obveze točnosti, zanesljivosti in veljavnosti
Točnost, zanesljivost in veljavnost določajo ključne odgovornosti, povezane z izidom avtomatiziranih odločitev. Izraze moramo v povezavi z umetno inteligenco interpretirati tako posamično kot v povezavi enega z drugim.91

6.2.7 Načelo kakovosti podatkov
Omenjeno načelo se neposredno navezuje in izhaja iz obveze točnosti, zanesljivosti in veljavnosti.92

89 Universal Guidelines for Artificial Intelligence, URL:https://thepublicvoice.org/ai-universal-guidelines/memo/ (30. marec 2019)
6.2.8 Obveza javne varnosti
Obveza javne varnosti priznava, da sistemi umetne inteligence nadzorujejo naprave v fizičnem svetu, zaradi česar morajo odgovorne institucije oceniti tveganja in v skladu z ocenami postopati primerno preventivno.93

6.2.9 Načelo kibernetske varnosti
Kibernetski varnostni incidenti postajajo vsakodnevne novice. Poleg organizacij, ki so zgodovinsko tipične tarče (denimo finančne institucije), kočina napadov in zlorab raste tudi v sistemih, od katerih je odvisno delovanje družbe, ter v manjših sistemih, ki so bili do nedavnega relativno varni.94 Zaradi tega moramo predvidevati, da se bodo kibernetski napadi razširili tudi na sisteme umetne inteligence.

Obveza kibernetske varnosti izhaja iz obveze javne varnosti in poudarja tveganje, da so lahko tudi zelo dobro zasnovani sistemi tarča napadov, zato morajo razvijalci in izvajalci sistemov umetne inteligence tovrstno tveganje upoštevati.95

6.2.10 Prepoved tajnega profiliranja
Prepoved tajnega profiliranja izhaja iz prejšnjega načela identifikacijske obveznosti. Cilj je izogniti se asimetriji informacij, ki se vse bolj pojavlja pri sistemih umetne inteligence in zagotavljanju možnosti neodvisne odgovornosti.

Posameznik preživlja velik del svojega časa na internetu, kjer v zameno za storitev deli svoje podatke s ponudniki s celega sveta.96 Ti podatki imajo za podjetja določeno vrednost, saj s pomočjo njih nudijo boljšo storitev. Ker umetna inteligencija potrebuje veliko bazo podatkov, iz katerih se ima možnost učiti, je za ponudnike sistema umetne inteligence optimalno, da pridobijo čim več podatkov tudi tako, da tajno profilirajo svoje stranke. V Evropski Uniji se je te problematike lotila direktiva o varstvu osebnih podatkov97, ki specifično določa pod katerimi pogoji se lahko obdelujejo, zbirajo ter uporabljajo podatki. 98

94 Horizontalno področje »Kibernetska varnost«, URL: https://ikthm.gzs.si/vsebina/Podro%C4%8Dja/Kibernetska-varnost (30. marec 2019)
95 Universal Guidelines for Artificial Intelligence, URL: https://thepublicvoice.org/ai-universal-guidelines/memo/ (30. marec 2019)
96 Zomorodi, Manoushi, Do you know how much private information you give away every day? URL: http://time.com/4673602/terms-service-privacy-security/ (4. april 2019)
97 REGULATION (EU) 2016/679
6.2.11 Prepoved enotnega točkovanja (ocenjevanja posameznikov v družbi)

Prepoved enotnega točkovanja neposredno govori o tveganju, ki nastane z dodelitvijo enega večnamenskega števila posamezniku. Že zakonodaja o varstvu osebnih podatkov ni naklonjena univerzalnim identifikatorjem, ki omogočajo profiliranje posameznikov. Ti identifikatorji so pogosto zakonsko regulirani ter v nekaterih primerih celo prepovedani. Še večja skrb se pojavi pri univerzalnem enotnem točkovanju, kot ga opisuje to načelo. Enotna ocena odraža ne le enotni profil, ampak tudi vnaprej določen rezultat na več področjih človekovega delovanja. Enako obstaja tviranje, da se bodo v zasebnem sektorju pojavile enotne ocene. Iz tega sledi, da bi takšni sistemi lahko bili predmet tržne konkurence in državne regulacije. Vključno sestem točkovanja ne more biti protiutež zasebnemu sektorju, saj bo ta vedno raje uporabil svoje podatke kot tiste, ki jih izda vlada. Ker enotni sistemi predstavljajo diskriminacijo do posameznika, je priporočljivo, da se jih prepove.

6.2.11.1 Primer sistema enotnega točkovanja (ocenjevanja posameznikov v družbi)

Enotni točkovni sistem se je že pojavil v današnjem času, in sicer na Kitajskem, kjer je Kitajska vlada dodelila vsakemu državljanu na določenem območju število točk. Višje je število točk posameznika, boljši državljan je in ima posledično boljše pogoje za življenje. Primer prednosti, ki izhajajo iz visokega števila točk posameznika, je lažja pridobitev pridobitev kredita, lažje napredovanje v službi, prednostna uporaba javnega prometa itd. Nasprotno pa obstajajo omejitve, ki izhajajo iz prenizkega števila točk posameznika. Tak posameznik ne more uporabljati hitrega javnega prometa, kot so denimo hitri vlaki, ampak lahko uporablja le počasne avtobuse, prav tako mu banka ne omogoči kredita za življenje.

Tak sistem predstavlja popoln družbeni nadzor, saj tistim, ki enkrat padejo pod določeno mejo števila točk, popolnoma uniči življenje oziroma onemogoči dostop in uporabo mnogih, drugim samoumevnih in splošno dostopnih storitev. Posebnost Kitajskih je centralizacija služb ter prebivalstva v mesta, ki so od podeželja oddaljena več 100 kilometrov. V primeru, da je posameznik, ki ima nizko število točk iz podeželja in za službo uporablja hitre vlake, mu tak sistem prepreči prihod v službo. Hkrati vodstvo države postavlja vnaprej napisana pravila, kako si zvišati svoje osebne točke, oziroma kaj vpliva na znižanje le- teh. Celotni sistem se
implementira in izvaja pod pretvezo vzpodbude biti dober državljan, a vendar so nameni Kitajske vlade jasni.99

Posameznik, ki pade v takšno družbeno brezno, je na nek način ujet v njem, saj mu je preprečen dostop do enakopravnega življenja v državi. Tak sistem predstavlja popoln nadzor nad posamezniki, saj lahko vodstvo države svoje nasprotnike enostavno kaznuje z znižanjem točk.

6.2.12 Obveznost ustavitve sistema
Sistemi umetne inteligence morajo imeti možnost človeškega posega v delovanje in morebitno zaustavitev izvrševanja procesov, ki so določeni s posebnimi pogoji. Bistvo tega načela je, da mora človek biti sposoben prevzeti kontrolo nad izvajanjem sistemov, če oceni, da je to potrebno.

Obveznost prenehanja delovanja sistema umetne inteligence izpostavlja sposobnost odgovornosti za sistem umetne inteligence. Obveza predpostavlja, da mora sistem ostati pod človeškim nadzorom. Če slednje ni mogoče, je potrebno sistem ustaviti.

6.3 Primer uporabe smernic Sveta EU v primeru State v Loomis
Če primerjamo skladnost primera State v Loomis z načeli, ki jih je izdal svet EU, opazimo več kršitev. Problematika se pokaže že pri prvem načelu in sicer načelu spoštovanja temeljnih človekovih pravic, saj je program deloval pristransko in se mu tako ni zagotovilo pravičnega in neodvisnega sojenja.

COMPASS prav tako krši načelo nediskriminacije, saj ob svojih odločitvah diskriminatorno upošteva raso obtožencev. Raziskave Propublice so pokazale, da je sistem umetne inteligence prevzel človeški predsodek do afroameričanov in jih zaradi rase ter nesorazmerne zastopanosti v bazah podatkov avtomatsko uvršča v skupino, ki za družbo predstavlja večjo nevarnost.

Načelo kvalitete in varnosti pravi, da je pri obdelavi sodnih odločb in podatkov potrebno uporabiti potrjene vire in nematerialne podatke, zasnovane na multidisciplinarnih načinih v varnem tehnološkem okolju. Podjetje, ki je razvilo program COMPASS, obravnava kodo kot poslovno skrivnost, kar pomeni, da ne dovoli zunanje revizije in certificiranja. Iz programa ni razvidno kdaj, kako in zakaj so določeni podatki bili uporabljeni.

Načelo preglednosti, nepristranskosti in pravičnosti pravi, da je potrebno omogočiti dostopnost in razumljivost metod obdelave podatkov ter dovoliti zunanje revizije. Program COMPAS podjetje dojema kot svojo poslovno skrivnost, kar pomeni, da ne dopušča zunanjih revizij. Algoritem ne ponuja niti vpogleda v svojo kodo, niti v dokumentacijo, ki opisuje, kako je prišel do svoje odločitve. Ocena tveganja, ki jo poda, je sestavljena iz nekaj besed, kar predstavlja očitno kršitev načela.

Načelo pod nadzorom uporabnika pravi, da mora uporabnik imeti kontrolo nad delovanjem algoritma in morajo biti obveščeni o vzrokih za odločitve, ki jih algoritem sprejema. Sodnik, ki uporablja algoritem COMPASS, nima vpogleda v vzroke odločitve, ki jo sprejme algoritem. Algoritem bi moral za spoštovanje tega načela v jasnem jeziku sodniku izpisati ter utemeljiti, zakaj je sprejel določeno odločitev.

Rečemo lahko, da program COMPASS ni skladen z nobenim načelom, ki ga je sprejel Svet EU, s krši temeljne pravice, ki pripadajo posamezniku.

6.4 Ali so smernice zadosti?
Sprejetje smernic ter načel za varno uporabo sistemov umetne inteligence v sodstvu je dober prvi korak za ureditev panoge. Načela bi naj zagotovila varovanje pravic posameznikov nasproti sistemom umetne inteligence. Smernice niso zavezujoče vendar predstavljajo okvir za zakonodajalce, ki bodo sprejemali pravne akte na nacionalni ravni. Smernice in načela mojega mnenja niso zadosti za ureditev sistemov umetne inteligence v sodstvu, saj si trenutno ne moremo predstavljati kakšen vpliv bo lahko imela uvedba takšnih sistemov za naše življenje. Kot vidimo v primeru State v Loomis algoritem COMPAS ni skladen z nobenim načelom Sveta EU, kar kaže na očitno kršitev človekovih pravic nasproti obtožencem. Rešitev lahko vidimo v stalnem nadzoru razvijalcem ter upravljalcem sistemov umetne inteligence, kot tudi sorazmerne kazni za kršitve le teh načel. Iz primera Cambridge Analytica vidimo, da so podjetja tudi pripravljena plačati kazni, če ne presegajo dobičkov, ki jih ustvarjajo s kršenjem pravil. Potrebna je ureditev na nivoju GDPRja, ki zavezuje vse ponudnike storitev na Evropskem trgu ter ob kršitvi grozi s kaznijo sorazmerno s prometom družbe.

100 General data protection regulation, Regulation (EU) 2016/679
7 Zaključek

Sledenje cilju popolne objektivnosti sodnika ima lahko tudi negativne posledice, saj sodnik ob poznavanju relevantnih dejavnikov lahko individualizira svoje odločitve in se prilagodi specifičnim okoliščinam.

Cilj novih tehnologij je izboljšati stanje kot ga imamo doslej, vendar pa lahko novi sistemi predstavljajo morebitne težave in grožnje pri bodočem delovanju. Pozorno je potrebno spremljati in pretehtati širše vplive na uveljavljene norme. Pojavljajo se vprašanja prihodnjih oblik uveljavljenih institucij in posameznih dejavnikov kot so v pravu pritožbe, sodna praksa, itd.
V ZDA algoritme umetne inteligence že uporabljajo v pravni praksi - z njihovo pomočjo se določa ocena tveganja posameznikov v različnih stopnjah kazenskega postopka. Na ta način s pomočjo algoritma določijo, ali naj osumljencu odobrijo varščino. V kazenskem postopku se s pomočjo ocene tveganja določi tudi višina kazni. Po zaključku kazenskega postopka se na ta način odloča tudi o pogojnem izpustu obsojencev. Najbolj znan program za ocene tveganj posameznikov se imenuje COMPAS, ki pa zaradi kršitev temeljnih načel postavljenih s strani sveta EU, ni skladen s evropskimi načeli. Slabost tega sistema se kaže tudi v možnosti diskriminacije posamezne družbene skupine, manjšine, rasne pripadnosti, itd.

Osnovno vprašanje je, ali bodo sistemi umetne inteligence lahko samostojno odločali o krivdi posameznika. Z razvojem novih tehnologij je človeštvo doseglo rezultate, ki si jih prej nismo mogli predstavljati. S podporo umetne inteligence, lahko dobi sodnik močno orodje pri sprejemanju boljših odločitev. Tako se lahko bolj posveti procesnim zadevam, ki so pomembne za sam postopek (zaslišanje prič). Sedaj sistemi umetne inteligence še niso sposobni razviti kompleksnega razumevanja, ki je potrebno za analizo človeških nagibov, in posledično odločanja o krivdi ter kazni posameznika. Algoritmi umetne inteligence s sposobnostjo obdelave velike količine podatkov omogočijo sodniku, da se odloči, ali bo rezultate sprejete na tak način dejansko upošteval pri izreku sodbe.
Literatura

MONOGRAFIJE

- Bavcon, Ljubo; Šelih, Alenka; Ambrož, Matjaž; Filipčič, Katja: KAZENSKO PRAVO SPLOŠNI DEL, šesta izdaja, Uradni list RS, 2017
- Pavčnik, Marijan: TEORIJA PRAVA, četrta izdaja, GV Založba, 2011
- Pavčnik, Marijan: ARGUMENTACIJA V PRAVU, tretja izdaja, GV Založba, 2013
- Završnik, Aleš: BIG DATA, CRIME AND SOCIAL CONTROL, prva izdaja, Routledge, 2018
- Osoba, Osonde; Welser IV, William: AN INTELLIGENCE IN OUR IMAGE, The Risks of Bias and Errors in Artificial Intelligence, prva izdaja, RAND Corporation, 2017

REVIJE, DRUGE PERIODIČNE PUBLIKACIJE

- K., Plauštajner: Pravica do neodvisnega sodstva, v: Podjetje in delo (1994) 5-6, str. 842
- D. Reiling: Rondetafelgesprek over artificiële intelligentie in het recht, v: de Rechtspraak (2018), str. 1-3

BESEDILA ORGANOV

- Svet Evropske unije: Evropska etična listina o uporabi umetne inteligence v pravosodju, Strasbourg (4.december 2018)
PREDPISI

- Zakon o kazenskem postopku (Uradni list RS, št. 32/12 – uradno prečiščeno besedilo, 47/13, 87/14, 8/16 – odl. US, 64/16 – odl. US, 65/16 – odl. US, 66/17 – ORZKP 153, 154 in 22/19)
- Obligacijski zakonik (Uradni list RS, št. 97/07 – uradno prečiščeno besedilo, 64/16 – odl. US in 20/18 – OROZ 631)
- Ustava Republike Slovenije (Uradni list RS, št. 33/91-I, 42/97 – UZS68, 66/00 – UZ80, 24/03 – UZ3a, 47, 68, 69/04 – UZ14, 69/04 – UZ43, 69/04 – UZ50, 68/06 – UZ121, 140, 143, 47/13 – UZ148, 47/13 – UZ90, 97, 99 in 75/16 – UZ70a)
- REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

VIRI NA MEDMREŽJU

- Czernik Agnieszka, Was ist ein Algorithmus – Definition und Beispiele, URL: https://www.datenschutzbeauftragter-info.de/was-ist-ein-algorithmus-definition-und-beispiele/ (22. avgust 2019)

• Luber, Stefan, Was ist Machine Learning? URL: https://www.bigdata-insider.de/was-ist-machine-learning-a-592092/ (22.marec 2019)

• Wu, Jun, AI, Machine Learning, Depp Learning Explained Simply URL: https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-7b553da5b960 (22.august 2019)

• Einleitung, URL: http://www.neuronalesnetz.de/einleitung.html (23.marec 2019)

• Trainings- und Testphase, URL: http://www.neuronalesnetz.de/training.html (23.marec 2019)

• Knight, will, The Dark Secret at the Heart of AI, URL: https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ (24.marec 2019)

• Universal Guidelines for Artificial Inelligence, URL: https://thepublicvoice.org/ai-universal-guidelines/memo/ (30.marec 2019)

• Zomorodi, Manoushi, Do you know how much private information you give away every day? URL: http://time.com/4673602/terms-service-privacy-security/ (4.april 2019)

• Chodosh, Sara. “Courts use algorithms to help determine sentencing, but random people get the same results.” URL: https://www.popsci.com/recidivism-algorithm-random-bias (20.maj 2019)

• State v. Loomis, URL: https://harvardlawreview.org/2017/03/state-v-loomis/ (15.avgust 2019)