UNIVERZA V LJUBLJANI

FAKULETA ZA FARMACIJO

INES DURIČ

DIPLOMSKA NALOGA

UNIVERZITETNI ŠTIĐIJSKI PROGRAM KOZMETOLOGIJA

Ljubljana, 2019
IZOLACIJA ETERIČNIH OLJ IZ STORŽEV, IGLIC IN SMOLE NAVADNE SMREKE (*PICEA ABIES*) IN PRIMERJAVA NJIHOVE SESTAVE S PLINSKO KROMATOGRAFIJO, SKLOPLJENO Z MASNO SPEKTROMETRIJO

ISOLATION OF ESSENTIAL OILS FROM CONIFER CONES, LEAVES AND RESIN OF EUROPEAN SPRUCE (*PICEA ABIES*) AND THE COMPARISON OF THEIR CONTENTS WITH GAS CHROMATOGRAPHY, COUPLED WITH MASS SPECTROMETRY

Ljubljana, 2019

**ZAHVALA**

Iskrene zahvale mentorju za strokovno pomoč, vse napotke, odzivnost in prijaznost. Boljšega mentorstva si ne bi mogla želeti. Zahvalila pa bi se tudi mojim najdražjim, ki mi tekom študija stojijo ob strani in predvsem verjamejo vame.

**IZJAVA**

Izjavljam, da sem diplomsko delo samostojno izdelala pod vodstvom mentorja prof. dr. Aleša Obreza, mag.farm.

Ines Durič

Ljubljana, 2019


Članica diplomske komisije: asist. dr. Barbara Zorec, mag. farm
KAZALO VSEBINE

1. UVOD .................................................................................................................. 1
   1.1 ETERIČNA OLJA .......................................................................................... 1
       1.1.1 Splošno .................................................................................................. 1
       1.1.2 Uporaba ................................................................................................ 1
       1.1.3 Kemična sestava .................................................................................. 2
       1.1.4 Metode identifikacije ......................................................................... 2
       1.1.5 Metode izolacije .................................................................................. 3
   1.2 NAVADNA SMREKA (Picea Abies) .............................................................. 5
       1.2.1 Splošno o smreki .................................................................................. 5
       1.2.2 Botanični opis ...................................................................................... 5
       1.2.3 Eterično olje smreke .......................................................................... 6
       1.2.5 Farmakološke študije ......................................................................... 7

2. NAMEN DIPLOMSKE NALOGE ...................................................................... 8

3. MATERIALI IN METODE .................................................................................. 9
   3.1 MATERIALI ...................................................................................................... 9
       3.1.1 Reagenti in topila .................................................................................. 9
       3.1.2 Programska oprema .......................................................................... 9
       3.1.3 Aparature in laboratorijska oprema .................................................... 9
       3.1.4 Rastlinski material .......................................................................... 9
   3.2 METODE ......................................................................................................... 9
       3.2.1 Vodna destilacija .............................................................................. 9
       3.2.2 Spektroskopske metode .................................................................. 10
       3.2.3 Kromatografske metode ................................................................. 10

4. EKSPERIMENTALNO DELO .......................................................................... 11
   4.2 VODNA DESTILACIJA .............................................................................. 12
       4.2.1 Priprava rastlinske droge .................................................................. 12
       4.2.2 Potek destilacije .................................................................................. 13
   4.3 GC-MS .......................................................................................................... 14
   4.4 ANALIZA TLC POSAMEZNIH FRAKCIJ .................................................... 15
       4.4.1 Potek TLC ............................................................................................ 15
       4.4.2 Mobilne in stacionarna faza .............................................................. 15
KAZALO SLIK

Slika 1: Rastlinski deli smreke; povzeto po (27).................................................. 5
Slika 2: Priprava rastlinske droge – iglice ( Foto: I. Durić) ........................................ 12
Slika 3: Priprava rastlinske droge – storži (Foto: I. Durić) ........................................ 12
Slika 4: Aparatura za destilacijo EO in potek destilacije (Foto: I. Durić)................. 13
Slika 5: Aparatura GC-MS ( Foto: I. Durić) ............................................................... 14
Slika 6: Kromatogram, razvit v mobilni fazi zmesi etilacetat:heksan = 1:9 in orošen s fosfomolibdensko kisline (Foto: I. Durić)................................................................. 16
Slika 7: Izgled izdelka na spatuli in ovojnina – plastični vsebnik (Foto: I. Durić) ......... 18
Slika 8: Material za izdelavo umetnega EO (Foto: I. Durić)...................................... 20
Slika 9: Potek vonjalne analize (Foto: I. Durić) ................................................................. 21
Slika 10: Strukture spojin (monoterpeni), ki predstavljajo večinske deleže v EO, ekstrahiranem iz storžev. ......................................................................................................................... 26
Slika 11: Grafični prikaz v anketi navedenih opisov vonjav testnega lističa 4. .............. 33

KAZALO TABEL

Preglednica I: Klasifikacija terpenov (17) ........................................................................... 6
Preglednica II: Shematski prikaz poteka eksperimentalnega dela. .................................... 11
Preglednica III: Kromatografski pogoji analize GC-MS. ................................................. 14
Preglednica IV: Testni lističi za vonjalno analizo............................................................... 21
Preglednica V: Količine EO, pridobljene s prvo destilacijo. .............................................. 22
Preglednica VI: Količine EO, pridobljene z drugo destilacijo. ........................................... 22
Preglednica VII: Večinska sestava EO, ekstrahiranega iz oleorezina serije 1, ki smo jo določili z analizo GC-MS. ........................................................................................................... 24
Preglednica VIII: Večinska sestava EO, ekstrahiranega iz oleorezina serije 2, ki smo jo določili z analizo GC-MS.......................................................................................................................... 25
Preglednica IX: Večinska sestava EO, ekstrahiranega iz storžev serije 1, ki smo jo določili z analizo GC-MS. ..................................................................................................................... 25
Preglednica X: Večinska sestava EO, ekstrahiranega iz storžev serije 2, ki smo jo določili z analizo GC-MS. ...................................................................................................................... 26
Preglednica XI: Večinska sestava EO, ekstrahiranega iz iglic serije 1, ki smo jo določili z analizo GC-MS. ...................................................................................................................... 26
Preglednica XII: Večinska sestava EO, ekstrahiranega iz iglic serije 2, ki smo jo določili z analizo GC-MS ...................................................................................................................... 27
Preglednica XIII: Anketni rezultati ocen prijetnosti vonjav; P pomeni prijetno ............. 31
Preglednica XIV: Rezultati ocen moči vonjav posameznih vzorcev ................................. 32
POVZETEK


Poleg tega smo izdelali tudi preprost kozmetični izdelek, in sicerhladilni hidrogeł z aromatično vodo z eteričnim oljem smreke, ki ob nanosu na kožo hladi in je prijetnega vonja. Po Evropski farmakopeji bi ga uvrstili med poltrdne dermale farmacevtske oblike.

**Ključne besede:**
eterično olje, navadna smreka, vodna destilacija, analiza GC-MS, kromatografske metode
**ABSTRACT**

Essential oils are volatile, complex liquids whose synthesis takes place in various plant organs. Spruce (*Picea abies*) is one of the most common and economically important tree species in Slovenia. Spruce essential oil is dominated by monoterpenes. Of particular importance is their antimicrobial activity.

In the experimental part, we first successfully isolated essential oils from resin, needles and cones of spruce. We used water distillation method. We have compared the qualitative and quantitative composition of the isolated essential oils by gas chromatography coupled with mass spectrometry. We found, that the composition of the essential oils obtained from different plant parts of the spruce varied. We tried to purify the isolated essential oil, but the method column chromatography proved unsuitable due to the high volatility of the monoterpenes.

From the compounds that made up the majority of the natural essential oil, artificial essential oil was prepared. We analyzed the purity of the reference compounds by nuclear magnetic resonance. By odor analysis, we have made olfactory evaluation of our artificial and natural essential oils. Most of the respondents involved rated the smell of essential oils as pleasant; medium strong. They recognized the smell of spruce and forest. The smell of artificial essential oil was similar to natural.

In addition, we formed a simple cosmetic product. A hydro-gel with aromatic water that included spruce essential oil has pleasant scent and cooling effect when applied to the skin. According to the European Pharmacopoeia, it would be classified as semi-solid dermal pharmaceutical form.

**Keywords:**

essential oil, *Picea Abies*, water destillation, GC-MS analysis, chromatographic methods
<table>
<thead>
<tr>
<th>Slovenian Term</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO</td>
<td>eterično olje</td>
</tr>
<tr>
<td>GC-MS</td>
<td>plinska kromatografija, sklopljena z masno spektrometrij</td>
</tr>
</tbody>
</table>
1. UVOD

1.1 ETERIČNA OLJA

1.1.1 Splošno

Eterična olja definiramo kot hlapne, tekoče spojine z značilnim vonjem in kompleksno sestavo, saj lahko vsebujejo tudi več kot sto spojin. Sestavljajo jih zlasti terpeni (ogljkovodiki) in terpenoidi, ki nastanejo biosintežno iz mevalonske kisline (MVA) ali metileritritolfosfata (MEP) ter fenilpropanoidi. V naravi jih najdemo v aromatičnih rastlinah, in čeprav v njih predstavljajo le majhen delež, so njihova pomembna značilnost. Delež eteričnih olj predstavlja do 5% suhih rastlinskih delov (1, 2).

Rastline, ki proizvajajo eterično olje, so razširjene po celotnem rastlinskem kraljestvu. To so zlasti vrste iz družine ustnatic (Lamiaceae), nebinovk (Asteraceae), rožnic (Rosaceae) in trav (Poaceae). Njihova biosinteza poteka v različnih rastlinskih organih. Najpogosteje so to cvetovi, brsti, semena, listi, vejice, lubje, les, plodovi, korenine (2). Služijo kot zaščita pred mikroorganizmi in zajedavci ter za privabljanje opraševalcev (3). Pogosto njihova vloga v rastlinah ni povsem pojasnjena.

Mešajo se z večino organskih topilih, zaradi praviloma manjše gostote plavajo na vodi, imajo velik lomni količnik in so optično aktivna. Občutljiva so na kisik in svetlobo, njihovi učinki pa lahko tudi toksični (zlasti fenilpropanoidni tip) (4).

K neželenim učinkom EO štejemo alergijske reakcije. Poleg tega, da dražijo kožo, dihala in prebavila, so nekatera fotoksična ter imajo abortivne, mutagene in kancerogene lastnosti. Opisani so celo primeri zastrupitve otrok z EO limonske trave, evkaliptusa, zelenke, sasafrasa, terpentina in pomaranče (5).

1.1.2 Uporaba

Uporaba EO sega v obdobje antike, sprva zlasti v perfumih in zdravilih. Dandanes pa so prisotna v številnih industrijskih panogah zaradi njihovih protibakterijskih, protiglivičnih in antioksidativnih lastnosti. Od približno 3000 znanih eteričnih olj, jih je približno 300 komercialno pomembnih (2, 6).

Poleg aromatičnih lastnosti imajo EO širok spekter farmakoloških učinkov, npr. protimikrobne, antioksidativne, protivnetne in številne druge, ki koristijo zdravju ljudi. V tradicionalni medicini jih uporabljamo kot diuretike, digestive, uspavala, za blaženje kašlja, kot antiseptike,
antimikotike, ... Njihovo uporabo tako zasledimo na farmacevtskem, prehranskem in nenazadnje kozmetičnem področju. V številnih državah so uradno kvalificirana kot zdravila, kar je dokumentirano tudi v farmakopejah (1,5). Monografijo za eterična olja vsebuje tudi Evropska farmakopeja.

1.1.3 Kemična sestava
V glavnem EO sestavlja dva tipa spojin, terpenoidi (oksidirani terpenski ogljikovodiki) ter fenilpropanoidi, ki izhajajo iz različnih presnovnih poti. Fenilpropanoidi so prisotni sicer manj pogosto, a so vseeno ključni pri zagotavljanju nepogrešljivega in značilnega vonja, okusa in terapevtskih učinkov (2).

Sintezna EO so navadno izdelana iz ene ali več sestavin, ki prevladujejo v določenem eteričnem olju. Tako je npr. mentol pogosto nadomestek za razne vrste mete; evkaliptol za evkaliptus. Ravno interakcija med številnimi sestavinami; ogljikovodiki, alkoholi, estri, aldehidi, ketoni, fenoli pa daje posameznemu EO njegove značilne lastnosti in edinstvene terapevtske lastnosti (7).

Ne le umetna od sinteznih, tudi EO rastlin iste botanične vrste, ki rastejo v različnih geografskih področjih, se precej razlikujejo po svoji kemijski sestavi. Gre za različne kemotipe, ki jih navadno opredelimo s prevladajočo sestavino oziroma s tisto, ki je za določeno EO značilna posebnost (4). Ker so tako hlapna, je njihov kemizem odvisen tudi od letnega časa in celo ure v dnevu (7).

1.1.4 Metode identifikacije
Za identifikacijo EO uporabljamo različne metode, med njimi najpogosteje plinsko kromatografijo, saj z njo zaznamo tudi manj hlapne sestavine. Z njo pridobimo informacije o posameznih sestavinah EO in njihovih relativnih količinah. Žal pa je to draga in zamudna metoda, s katero lahko naenkrat analiziramo samo en vzorec, analiza pa traja od 45-60 min. Poleg tega ni primerna za identifikacijo termolabilnih spojin. Najcenejša in najpreprostejša identifikacijska metoda je tankoplastna kromatografija (TLC), ki omogoča identifikacijo in razkritje tudi ponarejenih EO. Z analizo TLC lahko ločimo tudi več vzorcev na posamezni TLC-ploščici in je izjemno prilagodljiva metoda. Rezultati so hitro in jasno vidni. Z uvedbo avtomatiziranih kromatogramov, ki jih je mogoče dobro dokumentirati, pa lahko metodo izvajamo tudi skladno s smernicami dobre proizvodne prakse (GMP). Plinska kromatografija nam poda podrobnejše informacije, medtem ko TLC uporabljamo za predhodno analizo.
vzorcev. Pri samem spoznavanju EO je pomembno tudi olfaktorno vrednotenje, a gre za subjektivno in ne dovolj natančno metodo (8).

1.1.5 Metode izolacije

Izplene izolacije EO je težko napovedati. Največji (30-70 %) so navadno pri balzamih in podobnih smolnatih rastlinskih izločkih, kot so gurjun, kopaiba, elemi in perujski balzam. Iz nageljnovih žbic in muškatnega oreščka lahko dobimo med 15 % in 17 %, iz semen do 9 % (kumina), za 1 kg EO vrtnice pa potrebujemo kar 700 kg cvetov. Iz sadnih lupin bergamotke, pomaranče in limone pa dobimo od 0,2 do približno 0,5 % EO (10).

Destilacija
Destilacija je najstarejša metoda pridobivanja EO, ki sega v antični čas Perzije, Turčije in Indije. Arabski svet je pripomogel, da je metoda postala široko uporabljana (7). Konvencionalne metode vključujejo vodno destilacijo, vodno-parno in parno destilacijo. Gre za široko uporabljeno metodo, ki je najcenejša od vseh. Slabost destilacije je majhen izples ekstrakcije (0,001 do 4 %). Glavna pomanjkljivost je možnost oksidacije spojine, obsežna hidroliza in termična razgradnja zaradi segrevanja, kar lahko povzroči nastanek neprijetnega vonja, zlasti če pri procesu nastajajo oksidirani derivati s 4-10 ogljikovimi atomi (1, 9).

Pri metodi vodne destilacije gre za segrevanje sveže ali posušene rastlinske droge, v stiku z vodo, do njenega vrelišča. Pri tem nastaja vodna para, ki povzroči sproščanje EO iz rastlinskih žlez. Ker segrevanje poteka v prisotnosti vode, se poveča njen parni tlak, prav tako pa tudi parni
tlak EO. EO se nato s pomočjo pare prenaša v kondenzacijsko komoro. Hidrofobno EO plava na površini vode. Gre za metodo ekstrakcije, ki traja več ur (1).

Če želimo skrajšati trajanje postopka, varčevati z energijo, zmanjšati izgube pomembnih polarnih spojin in omejiti možne modifikacije zaradi oksidacije, je primernejša metoda destilacije na osnovi vodne pare. Ta vključuje vođenje pare skozi rastlinski material. Pri vodnoparni destilaciji drogo položimo nad prepustno podlago nad plastjo vode, tako, da je v neposrednem stiku z vodno paro. Pri parni destilaciji pa sta izvor toplote in para prostorsko ločena od rastlinskega materiala (1, 9).

Pri pridobivanju EO se uporablja tudi suha destilacija, pri kateri stebla ali skorjo rastline segrevamo pri visokih temperaturah v ustreznih napravi, brez dodatka vode in pare (9).

**Ekstrakcija z organskimi topili**
Rastlinski material namočimo v izbranem organskem topilu, ekstrakt–absolut pa dobimo s koncentriranjem in odstranjevanjem topila pri znižanem tlaku. Tako se izognemo kemičnim spremembam (hidroliza, deprotonacija, hidratacija in ciklizacija), ki so lahko posledica destilacije. Metoda je primerna tudi za termolabilne snovi. Njena slabost pa je ostanek topila. Tej pomanjkljivosti bi se lahko izognili z uporabo kombinirane tehnologije z uporabo organskega topila z nizkim vreliščem (npr. pentana) in postopkom parne destilacije (11).

**Ekstrakcija s superkritičnim CO₂**
Ta metoda se najpogosteje uporablja za izolacijo EO iz aromatičnih rastlinskih delov. Omogoča učinkovito in hitro ekstrakcijo, brez vmesnih korakov čiščenja in uporabe zdravju škodljivih organskih topil, potrebne pa so le zmerne temperature. Gre za difuzijski proces ločevanja različnih sestavin z uporabo ogljikovega dioksida kot idealnega ekstrakcijskega topila. Trenutno se iz praktičnih razlogov za več kot 90 % ekstrakcij s superkritičnimi fluidi uporablja CO₂. Ni toksičen in eksploziven, je lahko dostopen, z regulacijo tlaka in temperature pa lahko spreminjamo njegove lastnosti in ga iz ekstrakta preprosto odstranimo. V superkritičnem območju ima CO₂ polarnost podobno pentanu in je zato primeren za ekstrakcijo lipofilnih snovi; ravno njegova nepolarna struktura pa je glavna pomanjkljivost, ki onemogoča ekstrakcijo polarnih snovi (1).
1.2 NAVADNA SMREKA (Picea Abies)

1.2.1 Splošno o smreki

Navadna smreka, Picea abies (L.) H. Karst, ki sodi v družino borovk (Pinaceae), je v gospodarskem smislu slovenska najpomembnejša drevesna vrsta. Po podatkih iz leta 2005 je njen delež v lesni zalogi 32,2 %, z večjim ali manjšim deležem pa je prisotna v kar 83 % slovenskih gozdov. Naravna rastišča obsegajo le 1,4 % gozdnih rastišč in so razširjena samo na najhladnejših območjih Alp in Dinarskega sveta. Do velike razširitve v drugi polovici 19. stoletja je prišlo zaradi njenega velikega vrednostnega prirastka na enoto površine. Je prilagodljiva, ima hitro rast, preprečuje erozijo tal in ima kakovosten in uporaben les. Je značilna vrsta hladnih rastišč, zadovolji se že z dva meseca trajajočim vegetacijskim obdobjem, odporna je proti mrazu in nizki zimski temperaturi. Ne prenaša suše in vročine, občutljiva pa je zlasti na onesnažen zrak. Smrekovina je mehka in prožna. Uporablja se v glavnem kot gradbeni material, v papirni industriji in za izdelavo glasbenih instrumentov (t.i. resonančni les s posebnimi akustičnimi lastnostmi) (12,13).

Tuja imena: angleško: European spruce, Norwayspruce; nemško.: Gemeine Fichte, Fichte, Rottanne (14).

1.2.2 Botanični opis

Navadna smreka je ena izmed približno 50 znanih vrst smrek in je edina pomembnejša evropska vrsta. Je zimzelena, zraste do 50 m visoko, korenine pa segajo tudi do globine 3 m. Je enodomna in vetrocvetna vrsta. Cveti aprila ali maja (13, 14,15). Skorja, ki je sprva gladka, je rdečkaste barve, pozneje pa začne odstopati v obliki okroglastih ploščic. Iglice so dolge do 2,5 cm, trde in bodeče. Na drevesu ostanejo več let in rastejo na vrhu poganjkov. Seme je velikosti približno 0,4 cm, krila so približno 4-krat večja. Storži so koničasti, viseči, dolgi od 10 do 15 cm. Dozorevajo jeseni, seme pa odprejo in sprostijo prihodnjo pomlad. Odpadejo zgodaj jeseni. Oleorezin (raztopina smole v eteričnem olju) mladih dreves je gladka in rdečkasto rjava snov, pozneje se na zraku strdi, drobi in postane sivkasto rjava.

Slika 1: Rastlinski deli smreke; povzeto po (27).
1.2.3 Eterično olje smreke

1.2.4 Sestavine in učinkovine
Glavna spojina EO iglavcev so terpeni in njihovi derivati. Do sedaj jih je bilo izoliranih že preko 4000, gre pa za povezavo dveh ali več izoprenskih (2-metilbutadienških) enot (16). Njihova klasifikacija je prikazana v Preglednici I.

**Preglednica I: Klasifikacija terpenov (17)**

<table>
<thead>
<tr>
<th>Skupina</th>
<th>Število enot C\textsubscript{10}H\textsubscript{16}</th>
<th>Molekulska formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>monoterpeni</td>
<td>1</td>
<td>C\textsubscript{10}H\textsubscript{16}</td>
</tr>
<tr>
<td>seskviterpeni</td>
<td>1,5</td>
<td>C\textsubscript{13}H\textsubscript{24}</td>
</tr>
<tr>
<td>diterpeni</td>
<td>2</td>
<td>C\textsubscript{20}H\textsubscript{32}</td>
</tr>
<tr>
<td>triterpeni</td>
<td>3</td>
<td>C\textsubscript{30}H\textsubscript{48}</td>
</tr>
<tr>
<td>politerpeni</td>
<td>&gt; 4</td>
<td>&gt; C\textsubscript{40}H\textsubscript{64}</td>
</tr>
</tbody>
</table>

Terpeni tvorijo različne prostorsko usmerjene obroče, ki se povezujejo med seboj na različne načine. Ločimo aciklične, monociklične, biciklične in triciklične derivate. Višji terpeni so sestavljeni tudi iz več obročev. Tehnološko najpomembnejši so monoterpeni, seskviterpeni in diterpeni (17).

1.2.5 Farmakološke študije

Že stoletja se v ljudski medicini na Laponskem, pripravki iz smrekovega oleorezina (»smole«) uporabljajo za zdravljenje kožnih poškodb in okužb. Splošno znano je, da izločanje oleorezina ščiti iglavce pred bakterijskimi in glivičnimi okužbami. Pojav odpornosti človeških patogenih bakterij in mnogi neželeni učinki antibiotikov, pa so privedli do študij novih protimikrobnih učinkovin, tudi rastlinskega izvora (3, 21, 22).


Čeprav so smole same po sebi v vodi slabo topne, se majhne količine dehidroabietinske in abietinske kisline (diterpenski kislini), lignani (npr. lariecinolin in matairezinol) in p-kumarna kisline, v njej raztopijo. Terapevtsko učinkovite smolne kisline lahko na ta način apliciramo tudi preko dermale laborcneh oblik kot so smolna mazila (22).


Eno od pomembnejših fitohranil, ki ga vsebuje EO smreke je lignan 7-hidroksimatarenezinol (18).
2. NAMEN DIPLOMSKE NALOGE

V okviru diplomske naloge bomo preverjali tri hipoteze:

- **Metoda vodne destilacije za izolacijo EO navadne smreke je ponovljiva.**

Iz različnih rastlinskih organov iste navadne smreke (*Picea abies*), in sicer storžev, iglic in oleorezina, bomo z metodo vodne destilacije izolirali eterična olja (EO). Slednja bomo uporabljali za nadaljnje eksperimentalno delo.

- **Eterična olja iz oleorezina, storžev in iglic istega drevesa se med seboj razlikujejo po sestavi hlapnih sestavin.**

Izolirane frakcije bomo primerjali med seboj, jih identificirali in kvantitativno ovrednotili s plinsko kromatografijo, sklopljeno z masno spektrometrijo.

- **Zmes umetno pripravljenega eteričnega olja smreke ima podoben prijeten vonj kot izolirano naravno eterično olje.**

Pripravili bomo umetno eterično olje z ustreznim razmerjem referenčnih spojinev, ki večinsko sestavljajo naravno EO. Čistoto referenčnih spojinev bomo preverili z NMR. Sestavili bomo vprašalnik in z vonjalno analizo olfaktorno ovrednotili naša naravna in umetno EO.

Izdelali bomo tudi preprost kozmetičen izdelek, ki bo vseboval naše naravno izolirano EO.
3. **MATERIALI IN METODE**

3.1 **MATERIALI**

3.1.1 **Reagenti in topila**
Uporabljali smo reagente in topila naslednjih proizvajalcev: Sigma-Aldrich, CarloErba, Merck, Fluka in AcrosOrganics.

3.1.2 **Programska oprema**

3.1.3 **Aparature in laboratorijska oprema**
Poleg uporabljenih aparatur navedenih pri posameznih metodah dela in standardne laboratorijske steklovine, smo uporabili grelno ploščo RadleysHeat-On™, proizvajalca ShireHill, rotavapor R-114, proizvajalca Büchi in vodno kopel 490 Buchi (Švica), analizno tehtnico EG220-3-NM Kern, tehtnico (Železniki Slovenija) in magnetno mešalo Rotamix.

3.1.4 **Rastlinski material**
Oleorezin, iglice in storži smreke (*Picea abies*) starosti med 35 in 40 let, višine 15 m. Začetno rastišče je bilo v gozdu, severno od Litije, nato pa je bilo drevo presajeno v Stično. Rastlinski deli so bili nabrani v prvem tednu septembra 2018.

3.2 **METODE**

3.2.1 **Vodna destilacija**
Eterično olje smreke smo pridobili iz oleorezina, iglic in storžev smreke. Rastlinsko drogo smo najprej pripravili z mletjem in rezanjem rastlinskih delov. Rastlinski material smo v vodi segrevali pri temperaturi vrelišča. Zaradi segrevanja pri visoki temperaturi se je iz rastlinskih žlez sprostilo EO, ki je skupaj z vodo izhlapelo. Za destilacijo smo uporabili Clevengerjevo aparaturo. V hladilniku je zmes kondenzirala in se nabirala v zbirniku z merilno skalo v dveh plasteh, saj se vodna in organska faza ne mešata. EO zaradi manjše gostote plava na aromatični vodi. EO smo kasneje hranili v temnih stekleničkah v hladilniku, pri 8-10 °C.
3.2.2 Spektroskopske metode

Plinska kromatografija sklopljena z masno spektroskopijo
Metoda GC-MS služi za analizo sestave eteričnega olja. Za analizo in procesiranje spektrov smo uporabili GCMS-QP2010 Ultra, podatkovno knjižnico GC-MS FNSC 3 in računalniški program GCMS Solution 4.2 proizvajalca Shimadzu Corporation. Za ločbo smo uporabili nepolarno kapilarno kolono Rxi-5Sil MS, proizvajalca Restek, dolžine 30 m in notranjega premera 0,25 mm z 0,25 µm debelino nanosa 1,4-bis (dimetilsiloksani) fenilendimetilpolisiloksana.

Jedrska magnetna resonanca (NMR)
NMR uporabljamo za ugotavljanje struktur organskih spojov, posredno pa tudi za ugotavljanje čistosti vzorca. Spektere \(^1\)H-NMR najbolj izraženih referenčnih spojov v naših eteričnih oljih, in sicer mircena, α-pinena, β-pinena in (−)-limonena smo posneli s spektrometrom Bruker Avance DPx400 pri 400 MHz. Kot topilo smo uporabili CDCl\(_3\), za interni standard pa TMS. Posnete spektre smo analizirali s programom MestReC®.

3.2.3 Kromatografske metode

Tankoplastna kromatografija (TLC)
Metodo TLC uporabljamo za hitre analize vzorcev in pripravo na kolonsko kromatografijo. Spojine v vzorcu potujejo z različnimi hitrostmi zaradi razlik v njihovi afiniteti do SF in razlik v topnosti v uporabljenem topilu. Do ločevanja komponent pride zaradi različnega časa zadrževanja na trdni stacionarni fazi. Polarne komponente potujejo počasneje, nepolarne komponente, ki tvorijo manj interakcij s stacionarno fazo, pa z večjo hitrostjo. TLC smo izvajali v kadički proizvajalca Camag. Za stacionarno fazo smo uporabili TLC-ploščice 1.05554, silikagel 60, F\(_{254}\), dimenzij 20×20 cm, proizvajalca Merck, iz aluminiujevega nosilca z 0,25 mm debelim nanosom silikagela. Uporabljali smo različne mobilne faze, ki so navedene pri posameznih eksperimentih. Volumen MF je bil v vseh primerih 10-20 mL. Kot orositveni reagent smo uporabili fosfomolibdensko kisilino, ki smo jo nato posušili z grelno pištolo Black & Decker. Detekcijo smo opravili tudi z UV detektorjem, UV cabinet-II Camug, pri valovni dolžini 254 nm.
Kolonska kromatografija

Je separacijska metoda, kjer ločba komponent vzorca temelji na porazdeljevanju med stacionarno (SF) in mobilno fazo (MF). MF je vedno nepolarna, saj je silikagel v koloni polaren, zaradi hidroksilnih skupin v molekuli. V nasprotnem primeru, bi prišlo do nabrekanja stacionarne v mobilni fazi. MF, v kateri je raztopljen vzorec, potuje zaradi vpliva težnosti, njeno pot in posledično separacijo pa smo še pospešili s povišanim tlakom. SF predstavlja gel silicijevega dioksida, ki ga pripravimo iz silikagela, ki se v ustreznem mediju omoči in nabreke. Kot medij smo uporabili MF, s katero smo eluirali vzorec, kot MF na silikagel velikosti 60 proizvajalca Merck. MF smo vedno določili na podlagi rezultatov TLC. Pri prehodu MF skozi kolono, smo lovili posamezne frakcije.

4. EKSPERIMENTALNO DELO

Preglednica II: Shematski prikaz poteka eksperimentalnega dela.

![Preglednica II: Shematski prikaz poteka eksperimentalnega dela.](image-url)
4.2 VODNA DESTILACIJA

4.2.1 Priprava rastlinske droge

Natehtali smo 0,9 kg storžev in 0,6 kg iglic, jih razrezali na manjše kose in zmleli. Pri iglicah smo se osredotočili na enoletne poganjke. Uporabili smo kuhinjski mlinček (znamka Mia) in male vrtne škarje. Oleorezina predhodno nismo obdelali. Iz storžev smo ga dobili 8,3 g, za destilacijo druge serije, nabrane iz drevesnega debla, pa smo imeli na voljo 25 g vzorca.

Slika 2: Priprava rastlinske droge – iglice (Foto: I. Durič)

Ker smo želeli pridobiti še večjo količino vzorca za nadaljnje analize in ugotoviti izplen ter ponovljivost vodne destilacije, smo slednjo izvedli še enkrat. Tokrat smo natehtali 1,4 kg storžev in 0,7 kg iglic. V tem primeru smo uporabili večji in zmogljivejši mlinček ter tako dobili bolj zmleto drogo.

4.2.2 Potek destilacije

Drogo smo razdelili v štiri 5 L buče, vse prelili s po 3 L vrele vode in destilirali 3 ure ob stalnem mešanju na magnetnem mešalu, s hitrostjo 100 obratov na min (rpm; ang. rounds per minute).

Slika 4: Aparatura za destilacijo EO in potek destilacije (Foto: I. Durić).

Oleorezinu prve serije smo dodali 0,2 L, oleorezinu druge serije pa 0,25 L vrele vode. Pri obeh serijah smo uporabili 500 mL bučko. Za boljšo ekstrakcijo smo dodali še vrelne kamenčke in med destilacijo vsebino vsake toliko ročno zmešali. Tudi oleorezin smo destilirali 3 ure.

Destilacijo smo izvajali pri temperaturi grelnega plašča 150-200 °C.
4.3 GC-MS

EO, ki smo jih izolirali z vodno destilacijo, smo analizirali z aparaturo GC-MS.

Slika 5: Aparatura GC-MS (Foto: I. Durić).

Tehnični podatki: vklop filamenta pri 2,8 min, začetek snemanja pri 3,0 min, celoten čas analize: 60,0 min.

Preglednica III: Kromatografski pogoji analize GC-MS.

<table>
<thead>
<tr>
<th>nosilni plin:</th>
<th>helij</th>
</tr>
</thead>
<tbody>
<tr>
<td>pretok plina:</td>
<td>1 mL/min (linearna hitrost)</td>
</tr>
<tr>
<td>koncentracija vzorca:</td>
<td>10 µL/mL (heksan), hidrolat 100 %</td>
</tr>
<tr>
<td>način injiciranja:</td>
<td>»split« 1:100</td>
</tr>
<tr>
<td>temperaturni program:</td>
<td>50 °C (5 min), 50→200 °C (3 °C/min), 200 °C (5 min)</td>
</tr>
<tr>
<td>temperatura injektorja:</td>
<td>250 °C</td>
</tr>
<tr>
<td>temperatura vmesnika:</td>
<td>250 °C</td>
</tr>
<tr>
<td>volumen injiciranja:</td>
<td>1 µL</td>
</tr>
<tr>
<td>napetost na detektorju:</td>
<td>1 kV</td>
</tr>
<tr>
<td>način ionizacije:</td>
<td>EI</td>
</tr>
<tr>
<td>energija ionizacije:</td>
<td>-70 eV</td>
</tr>
<tr>
<td>frekvenca zajemanja podatkov:</td>
<td>5 Hz</td>
</tr>
<tr>
<td>območje merjenja relativne molekulske mase (m/z):</td>
<td>40-400</td>
</tr>
</tbody>
</table>

Na Fakulteti za farmacijo smo izbrali ustrezne referenčne standarde, in sicer tiste spojine, katerih vsebnost je bila glede na analizo GC-MS, največja: mircen, α-pinen, β-pinen in (-)-limonen. Z NMR smo preverili njihovo ustreznost in čistoto, saj smo jih potrebovali za nadaljnje eksperimentalno delo.
4.4 ANALIZA TLC POSAMEZNIH FRAKCIJ

Želeli smo ugotoviti optimalno sestavo MF za kolonsko kromatografijo, s katero bi bolje ločili že lise na kromatografskih ploščicah.

4.4.1 Potek TLC

Referenčne spojine in EO, ki smo jih shranjevali v hladilniku, smo morali pred nanosom na TLC razredčiti. Tako smo po 2 mg vsakega vzorca razredčili s po 1 mL etilacetata. v ustrezno označenih vialah. Na TLC-ploščico smo s stekleno kapilaro nanesli raztopino destiliranega eteričnega olja ter raztopine referenčnih spojin. Stekleno kapilaro smo pred vsakim nanosom vzorca dvakrat očistili v metanolu.

Ploščice smo razvili v kadički, uporabili različne MF in jih nekaj sekund sušili s sušilnikom. Pazili smo, da je ta del potekal hitro, saj so spojine v EO zelo hlapne. Lise smo pogledali pod UV lučko pri valovni dolžini 254 nm ter jih občrtali s svinčnikom. Šele nato smo jih derivatizirali s predpisanim orositvenim reagentom ter jih zopet hitro segreli s pištolom na vroči zrak. Pri tem postopku so se lise posameznih sestavin eteričnih olj značilno obarvale.

Orositveni reagent: fosfomolibdenska kislina

Referenčne spojine: mircen, α-pinien, β-pinien, (-)-limonen

4.4.2 Mobilne in stacionarna faza

Pripravili smo zmesi z različnimi volumskimi deleži topil. Mobilne faze:

1. heksan
2. dietileter
3. etilacetat
4. etilacetat:heksan = 1:1,
5. etilacetat:heksan = 1:2,
6. etilacetat:heksan = 1:3,
7. etilacetat:heksan = 1:9,
8. etilacetat:heksan = 1:19.

Kot najboljša se je izkazala mobilna faza etilacetat:heksan = 1:9 (Slika 7), saj so bile lise na drugih ploščicah previsoko ali prenizko.
Slika 6: Kromatogram, razvit v mobilni fazi zmesi etilacetat:heksan = 1:9 in orošen s fosfomolibdensko kislico (Foto: I. Durič).

Kot stacionarna faza so služile TLC-ploščice, ki smo jih razrezali na velikosti 10 × 6,5 cm. Vzorce smo nanesli s stekleno kapilaro, in sicer 1 cm od spodnjega roba, v medsebojnem razmiku po 0,7 cm. Na zgornjem robu pa smo označili, do kam mora potovati MF.
4.5 ČIŠČENJE FRAKCIJ S KOLONSKO KROMATOGRAFIJO


4.5.1 Priprava kolone in SF

Dno steklene kolone (3 × 23 cm) smo zamašili z majhnim koščkom vate, nanj enakomerno nasuli 1 mm visoko plast peska ter omočili z majhno količino izbrane MF. S tem smo se izognili možnosti zamašitve. Kolono smo vpeli na kovinsko stojalo.

Za kolonsko kromatografijo smo natehtali 60 g silikagela, ki smo ga suspendirali v minimalni količini MF. Pripravljeno suspenzijo smo prenesli v kolono ob občasnem stresanju, da se je silikagel enakomerno in brez mehurčkov posedel po njeni celotni dolžini, nato pa tudi na vrhu nasuli tanko plast peska.

4.5.2 Potek kolonske kromatografije

Razredčen vzorec smo nanesli na vrh kolone, MF pa ga je spirala zaradi vpliva težnosti. MF smo ob steni vrha kolone dodajali počasi, konstantno dodajali s kapalko. Spiranje spojin iz vzorca smo pospešili z dodatnim tlakom, ki smo ga ustvarjali s črpalko. Glede na to, da tvorijo spojine iz vzorca različno močne interakcije s SF in MF, so hitrosti njihovega potovanja vzdolž kolone in posledični retencijski časi različni. Spojine z večjo afiniteto do MF potujejo hitreje kot tiste, ki imajo večjo afiniteto do SF.

Med zbiranjem frakcij smo opravljali analize eluiranih produktov s TLC. Na TLC-ploščice smo nanesli vsako peto frakcijo, razvili v naši MF, orosili s fosfomolibdensko kislino in posušili s sušilnikom. Pod UV lučko smo preverili morebitno prisotnost lis. Na ploščice smo sočasno nanašali tudi referenčne spojine.

Vzorec: 1,5 ml EO iz storžev druge serije.
IZDELAVA HLADILNEGA HIDROFILNEGA GELA Z ETERIČNIM OLJEM SMREKE

Izdelali smo hladilni hidrogel z aromatično vodo smreke. Uporabili smo recepturo povzeto po skripti Kozmetični izdelki I: vaje in teoretične osnove (9).

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Množična enota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroksietilceluloza 10000</td>
<td>2 g</td>
</tr>
<tr>
<td>Glicerol</td>
<td>5 g</td>
</tr>
<tr>
<td>Aromatična voda</td>
<td>do 50 g</td>
</tr>
</tbody>
</table>

Aromatična voda z eteričnim oljem smreke:

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Množična enota</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO smreke – storži</td>
<td>0,15 g</td>
</tr>
<tr>
<td>Etanol</td>
<td>5 g</td>
</tr>
<tr>
<td>Prekuhana, prečiščena voda</td>
<td>do 100 g</td>
</tr>
</tbody>
</table>

Hidroksicelulozo smo raztrli z glicerolom, dodali aromatično vodo, previdno mešali in pustili nabrekati eno uro. EO smreke smo raztopili v etanolu ter dodali prekuhano prečiščeno vodo, pridobljeno z reverzno osmozo. Izdelek smo prenesli v plastičen vsebnik s pokrovom, ki dobro tesni in ga hranili v hladilniku.

Slika 7: Izgled izdelka na spatuli in ovojnina – plastični vsebnik (Foto: I. Durić).
4.7 IZDELAVA UMETNEGA ETERIČNEGA OLJA

Ker smo v okviru diplomsko naloge želeli izvesti tudi vonjalno analizo, s katero bi primerjali vonj naravnih in umetnega eteričnega olja, smo morali slednje najprej pripraviti. Količino referenčnih spojin in njihovih razmerij smo določili na podlagi rezultatov analize GC-MS ekstrahiranega EO. Odmerjanje količin in mešanje smo opravili s pomočjo avtomatske pipete, vsebine zbirali v plastičnih epruvetkah Eppendorf, zmes pa nato prenesli v temno vialo. Za pripravo 1 mL EO smo odmerili in pomešali:

<table>
<thead>
<tr>
<th>Količina</th>
<th>Sestavina</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 µL</td>
<td>mircena</td>
</tr>
<tr>
<td>250 µL</td>
<td>β-pinena</td>
</tr>
<tr>
<td>100 µL</td>
<td>(-)-limonen</td>
</tr>
<tr>
<td>10 µL</td>
<td>α-pinena</td>
</tr>
</tbody>
</table>

Slika 8: Material za izdelavo umetnega EO (Foto: I. Durič).
4.8 VONJALNA ANALIZA

Naša naravna in umetno eterično olje smo vrednotili tudi olfaktorno. Eden od uporabljenih vzorcev je bil tudi mircen, ki je bil najbolj zastopana spojina v EO oleorezina serije 1. Sestavili smo vprašalnik in ga razdelili 20 prostovoljcev, študentov in zaposlenih na Fakulteti za farmacijo. V prvem delu smo jih spraševali o njihovem spolu in starosti, v drugem delu vprašalniku pa so morali podati ocene prijetnosti/neprijetnosti vonja vzorcev, glede na ocenjevalno lestvico od 0 do 5 ter zapisati asociacije, ki so jih imeli ob posameznem vonju.

Vonjalno analizo smo opravljali spomladi 2019, pri sobni temperaturi, v zračnem laboratoriju na Fakulteti za farmacijo. Kot nosilni medij smo uporabili vonjalne lističe proizvajalca Sigma-Aldrich. Eno uro pred izvedbo analize smo pripravili etanolne raztopine naših vzorcev, in sicer s koncentracijami po 1 µL/mL. Testne lističe smo prenesli v označene epruvete, pokrite z alufolijo, da bi preprečili izhlapevanje ter jih postavili v stojala. Kot slepi vzorec smo uporabili testni listič, na katerega smo nanesli etanol.

Prostovoljci so vprašalnik izpolnjevali sproti, ob zaznavanju vonjav. Med testiranjem vzorcev so imeli par minut premora, pri čemer je celotna analiza trajala približno 30 min. Anonimni vprašalnik so izpolnjevali individualno.

**Slika 9:** Potek vonjalne analiz (Foto: I. Durić).

**Preglednica IV:** Testni lističi za vonjalno analizo.

<table>
<thead>
<tr>
<th>Številka testnega lističa</th>
<th>Vzorec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EO iz oleorezina serije 1</td>
</tr>
<tr>
<td>2</td>
<td>EO iz storžev</td>
</tr>
<tr>
<td>3</td>
<td>EO iz iglic</td>
</tr>
<tr>
<td>4</td>
<td>umetno EO (storži)</td>
</tr>
<tr>
<td>5</td>
<td>etanol</td>
</tr>
<tr>
<td>6</td>
<td>EO iz oleorezina serije 2</td>
</tr>
<tr>
<td>7</td>
<td>mircen</td>
</tr>
</tbody>
</table>
5. REZULTATI IN RAZPRAVA

5.1 OPAŽANJA OB DESTILACIJI

V Preglednici V so navedene količine EO, ki smo jih dobili iz posamezne steklene buče. Izračunali smo tudi količine EO, preračunane na 1 kg rastlinske droge.

**Preglednica V:** Količine EO, pridobljene s prvo destilacijo.

<table>
<thead>
<tr>
<th>Rastlinska droga:</th>
<th>Količina rastlinske droge v g:</th>
<th>Količina pridobljenega EO v mL:</th>
<th>Vsebnost EO [mL/kg]:</th>
<th>Vsebnost EO v %:</th>
</tr>
</thead>
<tbody>
<tr>
<td>storži 1</td>
<td>450</td>
<td>0,97</td>
<td>2,16</td>
<td>0,48</td>
</tr>
<tr>
<td>storži 2</td>
<td>450</td>
<td>0,75</td>
<td>1,67</td>
<td>0,37</td>
</tr>
<tr>
<td>iglice 1</td>
<td>300</td>
<td>0,88</td>
<td>2,93</td>
<td>0,99</td>
</tr>
<tr>
<td>iglice 2</td>
<td>300</td>
<td>0,80</td>
<td>2,67</td>
<td>0,89</td>
</tr>
<tr>
<td>oleorezin</td>
<td>8,3</td>
<td>0,21</td>
<td>25,3</td>
<td>2,53</td>
</tr>
</tbody>
</table>

**Preglednica VI:** Količine EO, pridobljene z drugo destilacijo.

<table>
<thead>
<tr>
<th>Rastlinska droga:</th>
<th>Količina rastlinske droge:</th>
<th>Količina pridobljenega EO v mL:</th>
<th>Vsebnost EO [mL/kg]:</th>
<th>Vsebnost EO v %:</th>
</tr>
</thead>
<tbody>
<tr>
<td>storži 1</td>
<td>700</td>
<td>1,05</td>
<td>1,50</td>
<td>0,14</td>
</tr>
<tr>
<td>storži 2</td>
<td>700</td>
<td>1,0</td>
<td>1,43</td>
<td>0,20</td>
</tr>
<tr>
<td>iglice 1</td>
<td>350</td>
<td>1,04</td>
<td>2,97</td>
<td>0,85</td>
</tr>
<tr>
<td>iglice 2</td>
<td>350</td>
<td>0,98</td>
<td>2,80</td>
<td>0,80</td>
</tr>
<tr>
<td>oleorezin</td>
<td>25</td>
<td>2,51</td>
<td>100</td>
<td>10,0</td>
</tr>
</tbody>
</table>

Mletje rastlinskih delov je bilo zelo težavno. Zato smo pri drugi seriji uporabili večji in zmogljivejši mlinček. Temperaturni okvir destilacije je bil višji od vrelišča vode, saj smo predvidevali, da bo prišlo do prenosa toplote ne le v hladilniku destilatorja, ampak tudi v sami stekleni posodi. Vzorce, ki so bili večji od 2 mL, smo prenesli v ljiločnik, kjer smo EO ločili od aromatične vode.

Vonj destilacije oleorezina prve serije ni bil prijeten. Prav tako je bila otežena tudi sama destilacija, saj se oleorezin ni povsem raztopil. To težavo smo poskušali reševati s stalnim
mešanjem. Tudi med destilacijo oleorezina druge serije smo zaznavali neprijeten vonj. Vonj, ki se je sproščal pri destilacijah drugih rastlinskih delov, pa je bil prijeten. Destilacija rastlinske droge, ki je bila bolj zmleta, je oddajala intenzivnejši vonj. Vsa izolirana EO in aromatične vode pa so na koncu imeli prijeten vonj.

Ob primerjavi izkoristkov EO, ki smo jih pridobili iz različnih rastlinskih delov, smo ugotovili, da so bili ti največji pri oleorezinu (Preglednici V in VI). Zelo smo bili presenečeni nad tem, da smo iz oleorezina druge serije, ki je bil mehkejš in nabran iz drevesnega debla, dobili kar 4-krat več EO kot pri prvi seriji, kar je predstavljalo kar 10 % celotne rastlinske droge (Preglednica VI).

Ugotovili smo, da intenzivnejše mletje ne vpliva na količino dobljenega EO. Pri drugi destilaciji smo dobili celo manjšo količino EO iz storžev, pri čemer pa razlike glede na prvo serijo niso velike. Verjetno je do izgub prišlo v samem destilatorju, saj smo količino dobljenega EO izmerili zelo natančno, s pomočjo z merilne pipete.

Metoda priprave EO z destilacijo je ponovljiva.

Metodo bi lahko izboljšali tako, da bi iglice potopili v tekoči dušik, pri čemer bi same odpadle z vej. Kot ekstrakcijsko sredstvo bi lahko izbrali pentan, šibko polarno organsko topilo, ki izloča terpene pri nižji temperaturi, vendar pa je njegova slabost v tem, da ekstrahira tudi slabo hlapne snovi, ki ne sodijo k monoterpenom, kar bi morda motilo nadaljnjo analizo (16).

V Ph. Eur. monografiji o pridobivanju EO iz navadne smreke ni. Glede na podatke v dostopni literaturi, ki navaja srednjo vrednost vsebnosti EO v iglicah 1,01 % (suha rastlinska droga: 0,95-1,15 %) pa lahko sklepamo, da so naši rezultati povsem primerljivi (10).
5.2 ANALIZA GC-MS
Glavne prednosti te metode so majhna poraba vzorca, selektivnost, občutljivost in avtomatiziranost. Naša analiza je bila zelo uspešna, saj smo uspeli identificirati kar nekaj spojine.
V Preglednicah VII-XII so navedene vse spojine, katerih vsebnost v vzorcih naših EO je bila >1 %.

Največje število spojin, in sicer kar 39, smo določili v vzorcu EO iz iglic. Do 3 % snovi v tem vzorcu pa je ostalo popolnoma neidentificiranih, saj program zanje ni našel primernega zadetka.
V vseh analiziranih vzorcih EO so bili količinsko najbolj zastopani monoterpeni in monoterpenoidi, in sicer mircen, limonen, α- in β-pinen, evkaliptol (1,8-cineol) in kamfen.
Seskviterpeni in seskviterpenoidi so težje hlapni in smo jih zaznali v sledovih. Največ jih je bilo v oleorezinu prve serije, kjer so predstavljali približno 5 % celotne sestave EO. Mednje sodijo longifolen, kariofilen, longipinen in α-humulen.
Vzorci EO iste serije, a pridobljeni iz različnih destilacijskih buč, v kater smo porazdelili rastlinsko drogo, so si bili med seboj enaki, kar potrjuje ponovljivost uporabljenega postopka vodne destilacije.

Preglednica VII: Večinska sestava EO, ekstrahiranega iz oleorezina serije 1, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,858</td>
<td>25,53</td>
<td>Mircen</td>
</tr>
<tr>
<td>2</td>
<td>15,857</td>
<td>24,98</td>
<td>Limonen</td>
</tr>
<tr>
<td>3</td>
<td>13,172</td>
<td>15,48</td>
<td>Pinen&lt;α-&gt;</td>
</tr>
<tr>
<td>4</td>
<td>14,789</td>
<td>7,18</td>
<td>Karen &lt;δ-3-&gt;</td>
</tr>
<tr>
<td>5</td>
<td>10,987</td>
<td>4,18</td>
<td>Pinen&lt;α-&gt;</td>
</tr>
<tr>
<td>6</td>
<td>59,134</td>
<td>3,28</td>
<td>Abietadien</td>
</tr>
<tr>
<td>7</td>
<td>57,421</td>
<td>2,49</td>
<td>ni ugotovljeno</td>
</tr>
<tr>
<td>8</td>
<td>34,015</td>
<td>2,32</td>
<td>Longifolen</td>
</tr>
<tr>
<td>9</td>
<td>34,457</td>
<td>2,15</td>
<td>Kariofilen&lt;(Z)-&gt;</td>
</tr>
<tr>
<td>10</td>
<td>53,376</td>
<td>1,98</td>
<td>Bajeren</td>
</tr>
<tr>
<td>11</td>
<td>31,426</td>
<td>1,71</td>
<td>Longipinen&lt;α-&gt;</td>
</tr>
<tr>
<td>12</td>
<td>53,844</td>
<td>1,01</td>
<td>Cembren</td>
</tr>
</tbody>
</table>
**Preglednica VIII:** Večinska sestava EO, ekstrahiranega iz oleorezina serije 2, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,963</td>
<td>44,01</td>
<td>Pinen&lt;α-&gt;</td>
</tr>
<tr>
<td>2</td>
<td>13,145</td>
<td>40,23</td>
<td>Pinen&lt;β-&gt;</td>
</tr>
<tr>
<td>3</td>
<td>15,818</td>
<td>8,07</td>
<td>Limonen</td>
</tr>
<tr>
<td>4</td>
<td>13,814</td>
<td>1,2</td>
<td>Mircen</td>
</tr>
<tr>
<td>5</td>
<td>24,156</td>
<td>1,12</td>
<td>Terpineol&lt;α-&gt;</td>
</tr>
</tbody>
</table>

Kot smo predvidevali, se sestavi oleorezinov razlikujeta. EO, izolirano iz oleorezina prve serije, vsebuje poleg monoterpenov še diterpenje (bajeren, cembren) in seskviterpenje medtem, ko v EO iz oleorezina druge serije prevladujejo monoterpeni. Med tem, ko pri prvi prevladujeta mircen in limonen (Preglednica VIII), pri drugi prevladujeta α- in β-pinen (Preglednica IX) (Slika 10).

**Preglednica IX:** Večinska sestava EO, ekstrahiranega iz storžev serije 1, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,864</td>
<td>38,92</td>
<td>Mircen</td>
<td>13,861</td>
<td>39,52</td>
<td>Mircen</td>
</tr>
<tr>
<td>2</td>
<td>13,173</td>
<td>25,33</td>
<td>Pinen&lt;β-&gt;</td>
<td>13,171</td>
<td>28,26</td>
<td>Pinen&lt;β-&gt;</td>
</tr>
<tr>
<td>3</td>
<td>15,849</td>
<td>11,5</td>
<td>Limonen</td>
<td>15,851</td>
<td>12,73</td>
<td>Limonen</td>
</tr>
<tr>
<td>4</td>
<td>10,985</td>
<td>7,37</td>
<td>Pinen&lt;α-&gt;</td>
<td>10,984</td>
<td>7,84</td>
<td>Pinen&lt;α-&gt;</td>
</tr>
<tr>
<td>5</td>
<td>58,98</td>
<td>2,76</td>
<td>ni ugotovljeno</td>
<td>14,787</td>
<td>2,72</td>
<td>Karen &lt;δ-3-&gt;</td>
</tr>
<tr>
<td>6</td>
<td>14,786</td>
<td>2,64</td>
<td>Karen &lt;δ-3-&gt;</td>
<td>34,098</td>
<td>1,38</td>
<td>Longifolen</td>
</tr>
<tr>
<td>7</td>
<td>59,122</td>
<td>1,36</td>
<td>Abietadien</td>
<td>59,124</td>
<td>1,05</td>
<td>Abietadien</td>
</tr>
<tr>
<td>8</td>
<td>34,013</td>
<td>1,09</td>
<td>Longifolen</td>
<td>31,417</td>
<td>1,04</td>
<td>Longipinen&lt;α-&gt;</td>
</tr>
<tr>
<td>9</td>
<td>15,969</td>
<td>1,07</td>
<td>Evkaliptol</td>
<td>28,42</td>
<td>0,72</td>
<td>Bornilacetat</td>
</tr>
</tbody>
</table>

Sestava EO, pridobljena z destilacijo storžev je bolj podobna tisti, ki smo jo določili v EO, pridobljenem iz oleorezina serije 1, tisti v EO iz oleorezina serije 2. Rezultat je smiseln, saj je bil smo oleorezin serije 1 pridobili iz storžev. Najvidnejša razlika pa je večja vsebnost mircena v EO iz storžev.
**Preglednica X:** Večinska sestava EO, ekstrahiranega iz storžev serije 2, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,838</td>
<td>36,13</td>
<td>Mircen</td>
<td>13,84</td>
<td>35,54</td>
<td>Mircen</td>
</tr>
<tr>
<td>2</td>
<td>13,15</td>
<td>29,27</td>
<td>Pinen&lt;beta-&gt;</td>
<td>13,152</td>
<td>29,36</td>
<td>Pinen&lt;beta-&gt;</td>
</tr>
<tr>
<td>3</td>
<td>15,826</td>
<td>11,9</td>
<td>Limonen</td>
<td>15,827</td>
<td>11,81</td>
<td>Limonen</td>
</tr>
<tr>
<td>4</td>
<td>10,964</td>
<td>8,36</td>
<td>Pinen&lt;α-&gt;</td>
<td>10,966</td>
<td>8,16</td>
<td>Pinen&lt;α-&gt;</td>
</tr>
<tr>
<td>5</td>
<td>14,762</td>
<td>2,67</td>
<td>Karen &lt;δ-3-&gt;</td>
<td>14,761</td>
<td>2,7</td>
<td>Karen &lt;δ-3-&gt;</td>
</tr>
<tr>
<td>6</td>
<td>24,155</td>
<td>1,64</td>
<td>Terpineol&lt;α-&gt;</td>
<td>15,944</td>
<td>1,28</td>
<td>Evkaliptol</td>
</tr>
<tr>
<td>7</td>
<td>15,942</td>
<td>1,5</td>
<td>Evkaliptol</td>
<td>24,164</td>
<td>1,21</td>
<td>Terpineol&lt;α-&gt;</td>
</tr>
<tr>
<td>8</td>
<td>28,397</td>
<td>1,24</td>
<td>Bornilacetat</td>
<td>28,399</td>
<td>1,2</td>
<td>Bornilacetat</td>
</tr>
</tbody>
</table>

**Slika 10:** Strukture spojin (monoterpeni), ki predstavljajo večinske deleže v EO, ekstrahiranem iz storžev.

**Preglednica XI:** Večinska sestava EO, ekstrahiranega iz iglic serije 1, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
<th>Ret. čas</th>
<th>Površina %</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,421</td>
<td>17,08</td>
<td>Bornilacetat</td>
<td>28,423</td>
<td>18,41</td>
<td>Bornilacetat</td>
</tr>
<tr>
<td>2</td>
<td>13,167</td>
<td>13,62</td>
<td>Pinen&lt;β-&gt;</td>
<td>13,164</td>
<td>13,39</td>
<td>Pinen&lt;β-&gt;</td>
</tr>
<tr>
<td>3</td>
<td>15,962</td>
<td>9,06</td>
<td>Evkaliptol</td>
<td>15,96</td>
<td>8,06</td>
<td>Evkaliptol</td>
</tr>
<tr>
<td>4</td>
<td>13,847</td>
<td>8,34</td>
<td>Mircen</td>
<td>13,845</td>
<td>7,46</td>
<td>Mircen</td>
</tr>
<tr>
<td>5</td>
<td>11,766</td>
<td>8,22</td>
<td>Kamfen</td>
<td>15,845</td>
<td>6,79</td>
<td>Limonen</td>
</tr>
</tbody>
</table>
### Preglednica XII: Večinska sestava EO, ekstrahiranega iz iglic serije 2, ki smo jo določili z analizo GC-MS.

<table>
<thead>
<tr>
<th>Spojina</th>
<th>Ret. čas</th>
<th>Površina</th>
<th>Molekula</th>
<th>Ret. čas</th>
<th>Površina</th>
<th>Molekula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,406</td>
<td>16,94</td>
<td>Bornilacetat</td>
<td>28,408</td>
<td>17,6</td>
<td>Bornilacetat</td>
</tr>
<tr>
<td>2</td>
<td>13,146</td>
<td>13,26</td>
<td>Pinen&lt; β-&gt;</td>
<td>13,146</td>
<td>12,09</td>
<td>Pinen&lt; β-&gt;</td>
</tr>
<tr>
<td>3</td>
<td>11,75</td>
<td>10,44</td>
<td>Kamfen</td>
<td>11,75</td>
<td>10,82</td>
<td>Kamfen</td>
</tr>
<tr>
<td>4</td>
<td>15,943</td>
<td>8,56</td>
<td>Evkaliptol</td>
<td>15,943</td>
<td>9,76</td>
<td>Evkaliptol</td>
</tr>
<tr>
<td>5</td>
<td>10,966</td>
<td>8,07</td>
<td>Pinen&lt; α-&gt;</td>
<td>10,965</td>
<td>7,68</td>
<td>Pinen&lt; α-&gt;</td>
</tr>
<tr>
<td>6</td>
<td>13,829</td>
<td>7,64</td>
<td>Mircen</td>
<td>13,83</td>
<td>7,42</td>
<td>Mircen</td>
</tr>
<tr>
<td>7</td>
<td>15,827</td>
<td>7,56</td>
<td>Limonen</td>
<td>15,829</td>
<td>7,39</td>
<td>Limonen</td>
</tr>
<tr>
<td>8</td>
<td>21,72</td>
<td>3,34</td>
<td>Kafra</td>
<td>21,717</td>
<td>3,88</td>
<td>Kafra</td>
</tr>
<tr>
<td>9</td>
<td>24,164</td>
<td>2,53</td>
<td>Terpineol&lt; α-&gt;</td>
<td>23,011</td>
<td>2,42</td>
<td>Borneol</td>
</tr>
<tr>
<td>10</td>
<td>35,948</td>
<td>2,31</td>
<td>Humulen&lt; α-&gt;</td>
<td>24,166</td>
<td>2,41</td>
<td>Terpineol&lt; α-&gt;</td>
</tr>
<tr>
<td>11</td>
<td>23,01</td>
<td>2,28</td>
<td>Borneol</td>
<td>35,951</td>
<td>2,17</td>
<td>Humulen&lt; α-&gt;</td>
</tr>
<tr>
<td>12</td>
<td>34,436</td>
<td>2,26</td>
<td>Kariofilen&lt; (Z)-&gt;</td>
<td>34,44</td>
<td>2,14</td>
<td>Kariofilen&lt; (Z)-&gt;</td>
</tr>
<tr>
<td>13</td>
<td>14,762</td>
<td>1,3</td>
<td>Karen &lt; δ-3-&gt;</td>
<td>22,144</td>
<td>1,53</td>
<td>Kamfenhidrat</td>
</tr>
<tr>
<td>14</td>
<td>22,145</td>
<td>1,13</td>
<td>Kamfenhidrat</td>
<td>14,763</td>
<td>1,11</td>
<td>Karen &lt; δ-3-&gt;</td>
</tr>
</tbody>
</table>

Z vidika uporabe eteričnih olj v kozmetičnih izdelkih (KI) lahko zaključimo, da bi bilo najbolj primerno EO iz oleorezina serije 1, saj vsebuje največ seskviterpenskih spojin. To je zaželeno s stališča stabilnosti EO, saj so monoterpeni manj stabilni in hitreje oksidirajo (prisotnost dvojne vezi), njihovi oksidacijski produkti (epoksidi, peroksidi) pa lahko povzročijo draženje kože. Seskviterpeni so na oksidacijo bolj odporni ali pa delujejo celo kot antioksidanti in zato podaljšajo stabilnost EO.
Naši rezultati so primerljivi s tistimi, objavljenimi v strokovni literaturi, ki kot glavne spojine smrekovih EO navajajo limonem, kamfen, α- pinen, mircen in bornilacetat, ob manjši vsebnosti seskviterpenov (12). V citirani študiji so dokazali tudi protimikrobo učinkovitost α- in β-pinena, δ-3-karena, limonena, kamfena in bornilacetata (12). Zato bi bila naša EO z vidika mikrobiološke aktivnosti, primerna za nadaljnjo uporabo v te namene.

Glede na to, da smo se osredotočili na enoletne poganjke iglic, naši rezultati niso primerljivi s tistimi, navedenimi v literaturi, ki navajajo, da v EO iz mladih iglic prevladujejo vsebnosti α-in β-pinena (23,3 in 29,7 %), medtem ko naj bi bila njuna vsebnost v starih iglicah veliko manjša (2,3 in 1,2 %) (26). Nekateri deleži sestavin naših EO se torej skladajo z objavljenimi podatki, drugi pa ne. Predvidevamo, da je rezultat takšen zato, ker pri pripravi rastlinske droge nismo dovolj natančno ločili enoletnih poganjkov, zato so bile med njimi tudi starejše iglice.

5.3 ANALIZA TLC
Z analizo TLC smo želeli ugotoviti, pri kateri MF dobi kromatogram, na katerem so lise med seboj dobro ločene. Kot najbolj optimalna so se izkazala zmes etilacetata in heksana v razmerju 1:9, lise pa so bile dobro ločene tudi pri razmerjih 1:14 in 1:19. Druge uporabljene MF pa so bile bodisi preveč nepolarne (heksan) bodisi preveč polarno (dietileter). V čistem heksanu so vse spojine ostale na točki nanosa, medtem ko so pri čistem polarnem dietiletru in etilacetatu potovale skupaj z njima in se posledično niso ustrezno ločile.

Do pojava lis je prišlo tudi zaradi oksidacije določenih funkcionalnih skupin (dvojne vezi, alkoholi, ketoni, aldehidi, kisline) s fosfomolibdensko kislinjo.

Fosfomolibdenska kisлина je močna kislina in oksidant, njena slabost pa je hitro bledenje, saj obarvane lise na kromatogramu sčasoma izginejo. Pri analizi naših vzorcev EO so izginile že po nekaj dneh. Na kromatogramih EO smo opazili veliko modrih lis, kar nakazuje na kompleksno sestavo ločenih spojin.
5.4 NEUSPEŠNO ČIŠČENJE FRAKCIJ S KOLONSKO KROMATOGRAFIJO
Za čiščenje s kolonsko kromatografijo smo izbrali EO, pridobljeno iz storžev, saj smo v tem primeru, na osnovi kromatograma, pričakovali največ strukturno različnih molekul v vzorcu.

Na TLC-ploščice smo nanesli vsako peto frakcijo, ploščice razvili v MF etilacetat:heksan 1:9, a se nam lise spojin po orositvi s fosfomolibdensko kislino tudi po 74 eluiranih frakcijah niso pokazale. Poskusili smo še z raztopino kalijevega permanganata, ki je močan oksidant, sposoben oksidirati dvojne vezi in večino organskih molekul, vendar smo bili tudi v tem primeru neuspešni.

Metoda čiščenja se je izkazala kot neprimerna, saj so monoterpeni izhlapevali skupaj z mobilno fazo, ki smo jo odparevali na rotavaporju pri znižanem tlaku.

5.5 KOMENTAR K SPEKTROM NMR

Mircen: $^1$H NMR (400MHz, DMSO-d$_6$), δ (ppm): 1.64 (s, 3H, CH$_3$), 1.72 (s, 3H, CH$_3$), 2.21-2.25 (m, 4H, CH$_2$), 5.03-5.27 (m, 4H, CH), 5.18 (m, 1H, CH), 6.40 (m, 1H, CH).

Alfa-pinen: $^1$H NMR (400MHz, DMSO-d$_6$), δ (ppm): 0.89 (s, 3H, CH$_3$), 1.17 (d, 1H, J =8,4 Hz, CH), 1.29 (s, 3H, CH$_3$), 1.68 (s, 3H, CH$_3$), 1.95 (m, 1H, CH$_2$), 2.09 (m, 1H, CH$_2$), 2.15-2.23 (m, 2H, CH$_2$), 2.37 (m, 1H, CH), 5.21 (m, 1H, CH).

Beta-pinen: $^1$H NMR (400MHz, DMSO-d$_6$), δ (ppm): 0.73 (s, 3H, CH$_3$), 1.26 (s, 3H, CH$_3$), 1.17 (d, 1H, J =9,6 Hz, CH), 1.80-1.87 (m, 2H, CH$_2$), 1.99 (m, 1H, CH), 2.24-2.36 (m, 2H, CH$_2$), 2.48 (m, 1H, CH$_2$), 2.51-2.58 (m, 1H, CH$_2$), 4.58-4.65 (m, 2H, CH$_2$).

Limonen: $^1$H NMR (400MHz, DMSO-d$_6$), δ (ppm): 1.47-1.57 (m, 1H, CH$_2$), 1.67 (s, 3H, CH$_3$), 1.76 (s, 3H, CH$_3$), 1.79-1.84 (m, 1H, CH$_2$), 1.99 (m, 2H, CH$_2$), 2.07-2.13 (m, 3H, CH$_2$, CH), 4.73 (m, 2H, CH$_2$), 5.42 (m, 1H, CH).
5.6 IZDELAVA KOZMETIČNEGA IZDELKA

Glede na fizikalno strukturo, sodijo hidrogeli med plastične gele. Podlaga je sestavljena iz sesatvine, ki tvori trodimenzionalno rešetko, v katero se mehansko imobilizira in adsorbira dispergirana vodna faza. –Po fizikalni in kemijski strukturi so zelo podobni poltrdnim dermalnim farmacevtskim oblikam, ki so podrobno opisane v veljavi Ph. Eur (25).

Za preprečevanje izhlapevanja vode oziroma nastanka kserogela, KI dodajajo vlažilce. V našem primeru smo za ta namen uizbrali glicerol.

Etanol je v recepturi za aromatično vodo služi kot sotopilo, saj so EO v vodi zelo slabo topna. V KI pa ima obenem tudi vlogo hlajenja, saj hlapi s površine kože, kar senzorično zaznavamo kot hlajenje. Vodo smo morali prekuhati, da smo zmanjšali prisotnost kisika, ki kvari EO.

Kozmetični izdelek z EO navadne smreke ima prijetno in nežno strukturo, ob nanosu na kožo hladi in je prijetnega vonja. Čeprav smo želeli dobiti konsistenco hidrofilnega gela, smo pripravili zelo viskozno polimerno raztopino. Zato bi morali recepturo popravitii z drugačno količino tvorca gela oz. z drugačnim razmerjem sestavin.
5.7 REZULTATI VONJALNE ANALIZE

Iz odgovorov v prveg delu vprašalnika (Priloga I) smo ugotovili povprečno starost anketiranih prostovoljcev, ki je bila 25 let. Veljavnih je bilo vseh 20 vprašalnikov. Spola sta bila enako zastopana.

V primerjavi s slepo kontrolo, to je testnim lističem, omočenim z etanolom, so se naša EO preiskovancem zdela prijetna. Med najprijetneje dišeče bi statistično značilno šteli testna listiĉa 1 in 4, na katerih je bilo EO iz storžev in umetno izdelano EO. Najbolj neprijeten se je preiskovancem zdel zdel testni listiĉ 5, na katerem je bila slepa kontrola, ki ga je kar 75 % anketiranih oznaĉilo z oznako N (neprijetno). Najbolj neprijeten od vseh vzorcev pa se jim je zdel vzorec 6, EO iz oleorezina serije 2, saj ga je 60 % vprašanih oznaĉilo kot neprijetnega.

Glede na rezultate olfaktorne analize lahko sklepamo, da smo uspešno zagotovili podobnost umetnega in naravnega EO, kar je bil tudi naš cilj.

Preglednica XIII: Anketni rezultati ocen prijetnosti vonja; P pomeni prijetno.

<table>
<thead>
<tr>
<th>Številka testnega listiĉa:</th>
<th>N</th>
<th>% vseh odgovorov</th>
<th>Standardni odklon (glede na P):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>70</td>
<td>0,41</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>45</td>
<td>0,51</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>50</td>
<td>0,51</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>65</td>
<td>0,50</td>
</tr>
<tr>
<td>5 – slepa kontrola</td>
<td>20</td>
<td>25</td>
<td>0,44</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>40</td>
<td>0,50</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>60</td>
<td>0,51</td>
</tr>
</tbody>
</table>

Anketiranci so poleg prijetnosti vonja ocenjevali tudi njegovo moĉ. Postavili smo naslednjo ocenjevalno lestvico: 1 - brez vonja, 2 - šibek vonj, 3 - srednje moĉan vonj in 4 - zelo moĉan vonj. Rezultati teh ocen so prikazani v Preglednici XIV.

vonje vseh preskušanih vzorcev (če izključimo slepega) označili kot močne, saj je bila njihova povprečna ocena 3,05. Razlog za tako visoko povprečno oceno bi lahko bil v tem, da smo vzorce premalo redčili. Zanimiva se nam je zdela tudi povprečna ocena moči vonja umetnega EO, ki naj bi imel med vsemi vzorci najšibkejši vonj.

Glavna spojina EO iz oleorezina serije 1 je bil mircen, in prav zato smo ga tudi samostojno vključili v analizo. Ugotovili smo, da je bila povprečna moč testnega lističa 7, kamor smo slednjega tudi nanesli, enaka povprečni moči lističa 1, ki označuje oleorezin serije 1. Velika molekulska masa mircena (136,23 g/mol) je najverjetneje tista, ki vpliva na intenziteto vonja, saj zabeleženi povprečni rezultat 2,95, pri obeh vzorcih (testna lističa 1 in 7), opredeljuje srednje močan vonj.

**Preglednica XIV: Rezultati ocen moči vonjav posameznih vzorcev.**

<table>
<thead>
<tr>
<th>Številka testnega lističa:</th>
<th>N</th>
<th>Aritmetična sredina:</th>
<th>Standardni odklon:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>2,95</td>
<td>0,60</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>3,15</td>
<td>0,67</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3,20</td>
<td>0,70</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>2,80</td>
<td>0,83</td>
</tr>
<tr>
<td>5 – slepa kontrola</td>
<td>20</td>
<td>1,95</td>
<td>0,89</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>3,28</td>
<td>0,67</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>2,95</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Anketirani so bili najbolj poenoten glede asociacij pri vrednotenju testnega lističa 4, na katerega je bilo nanesenno umetno EO. Njegov vonj jih je spominjal na vonj igravcev (natančneje, opisovali so smreko in njene dele, tudi oleorezin), sadje (omenjali so citrus), in zelišča. Kot že omenjeno, so ta vonj zaznavali kot prijeten. Slika 11 prikazuje deleže posameznih asociacij, ki so jih navedli anketirani pri vonjanju testnega lističa 4.
Slika 11: Grafični prikaz v anketi navedenih opisov vonjav testnega lističa 4.

Pri drugih testnih lističih so med najbolj pogoste asociacije preiskovanci zapisali naslednje: testni listič 1: jelka, smreka, gozd; testni listič 2: smreka, gozd, travnik; testni listič 3: smreka, mentol, trava; testni listič 6: smreka, smola, mentol; testni listič 7: cvetlica, čistilo, limona.

Slepi vzorec smo z razlogom postavili na sredino testnih lističev, saj smo želeli ugotoviti ali preiskovanci razlikujejo med njimi. Uspešno so ugotovili, da predstavlja testni listič 5 slepo kontrolo, saj so bile vse asociacije vezane na alkohol oz. etanol. Na podlagi tega rezultata sklepamo, da je naša vonjalna analiza potekala ustrezno, brez prenasičenosti prostora z vonjavami in so bili zato pridobljeni rezultati verodostojni.

Najbolj neopredeljeni so bili ankетirani pri testnem lističu 6. Kar 12 od njih ni napisalo nobene asociacije. Ta vzorec so predhodno označili kot najbolj intenziven in so ga verjetno zato tudi težje opredelili.

Podobne asociacije smo pričakovali pri testnih lističih 1 in 4, a so imeli pri vonjanju testnega lističa 1 preiskovanci največ raznolikih asociacij. Zato nam rezultati pri ugotavljanju podobnosti v tem primeru niso bili v pomoč.
6. SKLEP

V okviru diplomske naloge smo s pomočjo vodne destilacije uspešno izolirali etična olja iz različnih rastlinskih delov smreke. Metoda se je izkazala kot preprosta, učinkovita in ponovljiva.

Z analizo GC-MS smo ugotovili, da se izolirana etična olja iz oleorezina, iglic in storžev smreke med seboj razlikujejo tako kvalitativno kot kvantitativno.

Pri čiščenju etičnih olj (EO) s kolonsko kromatografijo smo ugotovili, da ta metoda ni primerna za izolacijo posameznih frakcij, saj EO smreke v glavnem sestavljajo monoterpeni, ki so zelo hlapni.

Izdelali smo preprost kozmetični izdelek, ki hlađi kožo in je prijetnega vonja. Čeprav nismo dobili željene konsistence, je primeren za uporabo. EO smreke, glede na podatke iz literature, zagotavlja tako njegovo mikrobiološko kakovost, kot tudi protimikrobeno delovanje.

Na podlagi sestave EO, ki smo jo določili z analizo GC-MS, smo z mešanjem referenčnih spojin v ustreznih razmerjih, pripravili umetno EO smreke. Z analizo NMR smo ugotovili, da smo uporabljali dokaj nečisto referenčno spojino mircen, ostale pa so izkazovale visoko stopnjo čistosti.

Z vonjalno analizo smo dokazali, da se vonja našega umetnega in naravnega etičnega olja skoraj ne razlikujeta. Vonji testiranih EO so se za preiskovance izkazali kot prijetni.

Preiskovanci so povprečno moč vonjav EO označili kot srednje močan vonj. Sama sestava EO, pridobljenih iz različnih rastlinskih delov, vpliva na njihov vonj, saj so preiskovanci zaznali razlike med različnimi vzorci.
7. VIRI


VIRI SLIK

Fotografije so last diplomanta, izjema je fotografija:

SLIKA 1:

8. PRILOGE

PRILOGA I: Vprašalnik za vonjalno analizo

Fakulteta za farmacijo
Katedra za farmacevtsko kemijo
Aškerčeva cesta 7
1000 Ljubljana

VPRAŠALNIK OB VKLJUČITVI V RAZISKAVO – VONJALNA ANALIZA

Starost/Age:  

Spol/Sex:    MOŠKI/male     ŽENSKI/female

a) Svojo oceno prijetnosti vonja podajte z oznako P (prijeten) oziroma N (neprijeten).     
/Give your pleasantness of the smell with mark P (pleasant) or N (not pleasant).

b) Za vsak posamezen vzorec ocenite jakost vonja:     
For each individual sample, give a rating of the odor strength:

1. Brez vonja, 1. No smell,
2. Šibek vonj 2. Poorsmell
4. Zelo močan vonj 4. Verystrongsmell

c) Napišite asociacije, ki jih imate ob vonju.     
Please write association of the smell.

<table>
<thead>
<tr>
<th>Št. vzorca/samplenumber</th>
<th>a) P/N</th>
<th>b) Jakost/strenght (1-4)</th>
<th>Asociacije/association</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRILOGA II: NMR spektri referenčnih spojin