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Abstract. In this paper we deal with a second order nonlinear evolution

inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic
regularization (approximation) of the problem and a priori bounds that permit

passing to the limit, we prove that the problem has a solution.

1. Introduction

Let T = [0, b] and let (X,H,X∗) be an evolution triple of spaces, with the
embedding of X into H being compact (see Section 2 for definitions).

In this paper, we study the following nonlinear evolution inclusion:

(1)

{
u′′(t) +A(t, u′(t)) +Bu(t) ∈ F (t, u(t), u′(t)) for almost all t ∈ T,
u(0) = u0, u

′(0) = u1.

}
In the past, such multi-valued problems were studied by Gasinski [3], Gasin-

ski and Smolka [6, 7], Migórski et al. [11, 12, 13, 14], Ochal [15], Papageorgiou,
Rădulescu and Repovš [16, 17], Papageorgiou and Yannakakis [18, 19]. The works
of Gasinski [3], Gasinski and Smolka [6, 7] and Ochal [15], all deal with hemivari-
ational inequalities, that is, F (t, x, y) = ∂J(x) with J(·) being a locally Lipschitz
functional and ∂J(·) denoting the Clarke subdifferential of J(·). In Papageorgiou
and Yannakakis [18, 19], the multivalued term F (t, x, y) is general (not necessarily
of the subdifferential type) and depends also on the time derivative of the unknown
function u(·). With the exception of Gasinski and Smolka [7], in all the other works
the viscosity term A(t, ·) is assumed to be coercive or zero. In the work of Gasinski
and Smolka [7], the viscosity term is autonomous (that is, time independent) and
A : X → X∗ is linear and bounded.

In this work, the viscosity term A : T ×X → X∗ is time dependent, noncoercive,
nonlinear and nonmonotone in x ∈ X. In this way, we extend and improve the result
of Gasinski and Smolka [7]. Our approach uses a kind of parabolic regularization
of the inclusion, analogous to the one used by Lions [10, p. 346] in the context of
semilinear hyperbolic equations.

2. Mathematical Background and Hypotheses

Let V, Y be Banach spaces and assume that V is embedded continuously and
densely into Y (denoted by V ↪→ Y ). Then we have the following properties:

(i) Y ∗ is embedded continuously into V ∗;
(ii) if V is reflexive, then Y ∗ ↪→ V ∗.

Key words and phrases. Evolution triple, compact embedding, parabolic regularization, non-
coercive viscosity term, a priori bounds.
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The following notion is a useful tool in the theory of evolution equations.

Definition 1. By an “evolution triple” (or “Gelfand triple”) we understand a triple
of spaces (X,H,X∗) such that

(a) X is a separable reflexive Banach space and X∗ is its topological dual;
(b) H is a separable Hilbert space identified with its dual H∗, that is, H = H∗

(pivot space);
(c) X ↪→ H.

Then from the initial remarks we have

X ↪→ H = H∗ ↪→ X∗.

In what follows, we denote by || · || the norm of X, by | · | the norm of H and by
|| · ||∗ the norm of X∗. Evidently we can find ĉ1, ĉ2 > 0 such that

| · | 6 ĉ1|| · || and || · ||∗ 6 ĉ2| · | .

By (·, ·) we denote the inner product of H and by 〈·, ·〉 the duality brackets for the
pair (X∗, X). We have

(2) 〈·, ·〉|H×X = (·, ·).

Let 1 < p <∞. The following space is important in the study of problem (1):

Wp(0, b) =
{
u ∈ Lp(T,X) : u′ ∈ Lp

′
(T,X∗)

} (1

p
+

1

p′
= 1

)
.

Here u′ is understood in the distributional sense (weak derivative). We know that

Lp(T,X)∗ = Lp
′
(T,X∗) (see, for example, Gasinski and Papageorgiou [4, p. 129]).

Suppose that u ∈ Wp(0, b). If we view u(·) as an X∗-valued function, then u(·) is
absolutely continuous, hence differentiable almost everywhere and this derivative

coincides with the distributional one. So, u′ ∈ Lp
′
(T,X∗) and we can say

Wp(0, b) ⊆ AC1,p′(T,X∗) = W 1,p′((0, b), X∗).

The space Wp(0, b) is equipped with the norm

||u||Wp
=
[
||u||pLp(T,X) + ||u′||p

Lp′ (T,X∗)

] 1
p

for all u ∈Wp(0, b).

Evidently, another equivalent norm on Wp(0, b) is

|u|Wp
= ||u||Lp(T,X) + ||u′||Lp(T,X∗) for all u ∈Wp(0, b).

With any of the above norms, Wp(0, b) becomes a separable reflexive Banach space.
We have that

Wp(0, b) ↪→ C(T,H);(3)

Wp(0, b) ↪→ Lp(T,H) and the embedding is compact.(4)

The elements of Wp(0, b) satisfy an integration by parts formula which will be
useful in our analysis.

Proposition 2. If u, v ∈Wp(0, b) and ξ(t) = (u(t), v(t)) for all t ∈ T , then ξ(·) is

absolutely continuous and
dξ

dt
(t) = 〈u′(t), v(t)〉+ 〈u(t), v′(t)〉 for almost all t ∈ T .
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Now suppose that (Ω,Σ, µ) is a finite measure space, Σ is µ− complete and Y is
a separable Banach space. A multifunction (set-valued function) F : Ω → 2Y \{∅}
is said to be “graph measurable”, if

GrF = {(ω, y) ∈ Ω× Y : y ∈ F (ω)} ∈ Σ×B(Y ),

with B(Y ) being the Borel σ-field of Y .
If F (·) has closed values, then graph measurability is equivalent to saying that

for every y ∈ Y the R+-valued function

ω 7→ d(y, F (ω)) = inf{||y − v||Y : v ∈ F (ω)}

is Σ-measurable.
Given a graph measurable multifunction F : Ω → 2Y \{∅}, the Yankov-von

Neumann-Aumann selection theorem (see Hu and Papageorgiou [8, p. 158]) implies
that F (·) admits a measurable selection, i.e. that there exists f : Ω → Y a Σ-
measurable function such that f(ω) ∈ F (ω) µ-almost everywhere. In fact, we
can find an entire sequence {fn}n>1 of measurable selections such that F (ω) ⊆
{fn(ω)}n>1 µ-almost everywhere.

For 1 6 p 6∞, we define

SpF = {f ∈ Lp(Ω, Y ) : f(ω) ∈ F (ω) µ-almost everywhere}.

It is easy to see that SpF 6= ∅ if and only if ω 7→ inf{||v||Y : v ∈ F (ω)} belongs to
Lp(Ω). This set is “decomposable” in the sense that if (A, f1, f2) ∈ Σ × SpF × S

p
F ,

then

χAf1 + χAcf2 ∈ SpF .
Finally, for a sequence {Cn}n>1 of nonempty subsets of Y , we define

w− lim sup
n→∞

Cn = {y ∈ Y : y = w− lim
k→∞

ynk
, ynk

∈ Cnk
, n1 < n2 < · · · < nk < · · · }.

For more details on the notions discussed in this section, we refer to Gasinski
and Papageorgiou [4], Roubiček [20], Zeidler [21] (for evolution triples and related
notations) and Hu and Papageorgiou [8] (for measurable multifunctions).

Let V be a reflexive Banach space and A : V → V ∗ a map. We say that A is
“pseudomonotone”, if A is continuous from every finite dimensional subspace of V
into V ∗w (= the dual V ∗ equipped with the weak topology) and if

vn
w−→ v in V, lim sup

n→∞
〈A(vn), vn − v〉 6 0

then

〈A(v), v − y〉 6 lim inf
n→∞

〈A(vn), vn − y〉 for all y ∈ V.

An everywhere defined maximal monotone operator is pseudomonotone. If V is
finite dimensional, then every continuous map A : V → V ∗ is pseudomonotone.

In what follows, for any Banach space Z, we will use the following notations:

Pf(c)(Z) = {C ⊆ Z : C is nonempty, closed (and convex)},
P(w)k(c)(Z) = {C ⊆ Z : C is nonempty, (weakly-) compact (and convex)}.

The hypotheses on the data of problem (1) are the following:
H(A) : A : T × T → X∗ is a map such that

(i) for all y ∈ X, t 7→ A(t, y) is measurable;
(ii) for almost all t ∈ T , the map y 7→ A(t, y) is pseudomonotone;
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(iii) ||A(t, y)||∗ 6 a1(t) + c1||y||p−1 for almost all t ∈ T and all y ∈ X, with

a1 ∈ Lp
′
(T ), c1 > 0, 2 6 p <∞;

(iv) 〈A(t, y), y〉 > 0 for almost all t ∈ T and all y ∈ X.

H(B) : B ∈ L (X,X∗), 〈Bx, y〉 = 〈x,By〉 for all x, y ∈ X and 〈Bx, x〉 > c0||x||2
for all x ∈ X and some c0 > 0.

H(F ) : F : T ×H ×H → Pfc(H) is a multifunction such that

(i) for all x, y ∈ H, t 7→ F (t, x, y) is graph measurable;
(ii) for almost all t ∈ T , the graph GrF (t, ·, ·) is sequentially closed in H ×

Hw ×Hw (here Hw denotes the Hilbert space H furnished with the weak
topology);

(iii) |F (t, x, y)| = sup{|h| : h ∈ F (t, x, y)} 6 a2(t)(1 + |x| + |y|) for almost all
t ∈ T and all x, y ∈ H with a2 ∈ L2(T )+.

Definition 3. We say that u ∈ C(T,X) is a “solution” of problem (1) with u0 ∈
X, u1 ∈ H, if

• u′ ∈Wp(0, b) and

• there exists f ∈ S2
F (·,u(·),u′(·)) such that{

u′′(t) +A(t, u′(t)) +Bu(t) = f(t) for almost all t ∈ T,
u(0) = u0, u

′(0) = u1.

}
In what follows, we denote by S(u0, u1) the set of solutions of problem (1).

Recalling that Wp(0, b) ↪→ C(T,H) (see (3)), we have that

S(u0, u1) ⊆ C1(T,H).

By Troyanski’s renorming theorem (see Gasinski and Papageorgiou [4, p. 911]) we
may assume without loss of generality that both X and X∗ are locally uniformly
convex. Let F : X → X∗ be the duality map of X defined by

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ||x||2 = ||x∗||2∗}.
We know that F(·) is single-valued and a homeomorphism (see Gasinski and Pa-
pageorgiou [4, p. 316] and Zeidler [21, p. 861]).

For every r > p, let Kr : X → X∗ be the map defined by

Kr(y) = ||y||r−2F(y) for all y ∈ X.

3. Existence Theorem

Given ε > 0, we consider the following perturbation (parabolic regularization)
of problem (1):

(5)

{
u′′(t) +A(t, u′(t)) + εKr(u

′(t)) +Bu(t) ∈ F (t, u(t), u′(t)) for a.a. t ∈ T,
u(0) = u0, u

′(0) = u1.

}
Consider the map Aε : T ×X → X∗ defined by

Aε(t, y) = A(t, y) + εKr(y) for all t ∈ T, and all y ∈ X.
This map has the following properties:

(i) for all y ∈ X, the map t 7→ Aε(t, y) is measurable;
(ii) for almost all t ∈ T , the map y 7→ Aε(t, y) is pseudomonotone;
(iii) ||Aε(t, y)||∗ 6 â1(t) + ĉ1||y||r−1 for almost all t ∈ T , all y ∈ X and with

â1 ∈ Lp
′
(T ), ĉ1 > 0 (recall that r > p and

1

r
+

1

r′
= 1);
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(iv) 〈Aε(t, y), y〉 > ε||y||r for all t ∈ T , all y ∈ X.

So, in problem (1) the viscosity term Aε(t, ·) is coercive. Therefore we can
apply Theorem 1 of Papageorgiou and Yannakakis [18] and we obtain the following
existence result for the approximate (regularized) problem (5).

Proposition 4. If hypotheses H(A), H(B), H(F ) hold and u0 ∈ X,u1 ∈ H, then
problem (5) admits a solution uε ∈W 1,r((0, b), X) ∩ C1(T,H) with

u′ε ∈Wr(0, b).

To produce a solution for the original problem (1), we have to pass to the limit
as ε → 0+. To do this, we need to have a priori bounds for the solutions uε(·)
which are independent of ε ∈ (0, 1] and r > p.

Proposition 5. If hypotheses H(A), H(B), H(F ) hold, u0 ∈ X,u1 ∈ H and u(·)
is a solution of (5), then there exists M0 > 0 which is independent of ε ∈ (0, 1] and
r > p for which we have

||u||C(T,X), ||u′||C(T,H), ε
1
r ||u′||Lr(T,X), ||u′′||L2(T,X∗) 6M0.

Proof. It follows from Proposition 4 that u′ ∈ Wr(0, b) and that there exists f ∈
S2
F (·,u(·),u′(·)) such that

u′′(t) +A(t, u′(t)) + εKr(u
′(t)) +Bu(t) = f(t) for almost all t ∈ T.

We act with u′(t) ∈ X. Then

〈u′′(t), u′(t)〉+ 〈A(t, u′(t)), u′(t)〉+ ε〈Kr(u
′(t)), u′(t)〉 = (f(t), u′(t))(6)

for almost all t ∈ T (see (2)).

We examine separately each summand on the left-hand side of (6). Recall that
u′r ∈Wr(0, b). So from Proposition 2 (the integration by parts formula), we have

(7) 〈u′′(t), u′(t)〉 =
1

2

d

dt
|u′(t)|2 for almost all t ∈ T.

Hypothesis H(A)(iv) and the definition of the duality map, imply that

(8) 〈A(t, u′(t)), u′(t)〉+ ε〈Kr(u
′(t)), u′(t)〉 > ε||u′(t)||r for almost all t ∈ T.

By hypothesis H(B), we have

(9) 〈Bu(t), u′(t)〉 =
1

2

d

dt
〈Bu(t), u(t)〉 for almost all t ∈ T.

We return to (6) and use (7), (8), (9). We obtain

1

2

d

dt
|u′(t)|2 + ε||u′(t)||r +

1

2

d

dt
〈Bu(t), u(t)〉 6 (f(t), u′(t)) for a.a. t ∈ T,

⇒ 1

2
|u′(t)|2 + ε

∫ t

0

||u′(s)||rds+ c0||u(t)||2

6
∫ t

0

(f(s), u′(s))ds+
1

2
|u1|2 +

1

2
||B||L ||u0||2 (see hypothesis H(B)).(10)
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Using hypothesis H(F )(iii), we get∫ t

0

(f(s), u′(s))ds

6
∫ t

0

[a2(s) + a2(s) (|u(s)|+ |u′(s)|)] |u′(s)|ds

6
∫ t

0

|u′(s)|2ds+

∫ t

0

a2(s)2ds+

∫ t

0

a2(s)2
[
|u(s)|2 + |u′(s)|2

]
ds.(11)

Recall that u ∈W 1,r((0, b), X) (see Proposition 4). So, u ∈ AC1,r(T,H) and we
can write

u(t) = u0 +

∫ t

0

u′(s)ds for all t ∈ T

⇒ |u(t)|2 6 2|u0|2 + 2b

∫ t

0

|u′(s)|2ds for all t ∈ T (using Jensen’s inequality).(12)

We use (12) in (11) and obtain∫ t

0

(f(s), u′(s))ds

6 ||a2||22 +

∫ t

0

[
1 + a2(s)2

]
|u′(s)|2ds+

∫ t

0

2a2(s)2

[
|u0|2 + b

∫ s

0

|u′(τ)|2dτ
]
ds

6 c2 +

∫ t

0

η(s)|u′(s)|2ds+ 2b

∫ t

0

a2(s)2

∫ s

0

|u′(τ)|2dτds(13)

for some c2 > 0 and η ∈ L1(T ).

We use (13) in (10) and have

1

2
|u′(t)|2 + ε

∫ t

0

||u′(s)||pds+ c0||u(t)||2

6 c3 +

∫ t

0

η(s)|u′(s)|2ds+ 2b

∫ t

0

a2(s)2

∫ s

0

|u′(τ)|2dτds for some c3 > 0.(14)

Invoking Proposition 1.7.87 of Denkowski, Migórski and Papageorgiou [2, p. 128]
we can find M > 0 (independent of ε ∈ (0, 1] and r > p) such that

|u′(t)|2 6M for all t ∈ T,
⇒ ||u′||C(T,H) 6M1 = M

1
2 .

Using this bound in (14), we can find M2 > 0 (independent of ε ∈ (0, 1] and r > p)
such that

||u||C(T,X) 6M2 and ε
1
r ||u′||Lr(T,X) 6M2.

Finally, directly from (5), we see that there exists M3 > 0 (independent of
ε ∈ (0, 1] and r > p) such that

||u′′||Lr′ (T,X∗) 6M3.

We set M0 = max{M1,M2,M3} > 0 and get the desired bound. �

The bounds produced in Proposition 5 permit passing to the limit as ε→ 0+ to
produce a solution for problem (1).
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Theorem 6. If hypotheses H(A), H(B), H(F ) hold and u0 ∈ X,u1 ∈ H, then
S(u0, u1) 6= ∅.

Proof. Let εn → 0+ and let un = uεn be solutions of the “regularized” problem
(5) (see Proposition 4). Because of the bounds established in Proposition 5 and by
passing to a suitable subsequence if necessary, we can say that

(15)

{
un

w∗−−→ u in L∞(T,X), un
w−→ u in C(T,H), un → u in Lr(T,H)

u′n
w∗−−→ y in L∞(T,H), u′′n

w−→ v in Lr
′
(T,X∗) (see (3) and (4)).

}
Recall that un ∈ AC1,r(T,H) for all n ∈ N and so

un(t) = u0 +

∫ t

0

u′n(s)ds for all t ∈ T,

⇒ u(t) = u0 +

∫ t

0

y(s)ds for all t ∈ T (see (15)),

⇒ u ∈ AC1,r(T,H) and u′ = y.

Since un ∈Wr(0, b) for all n ∈ N, we have

v = y′ = u′′ ∈ Lr
′
(T,X∗) (see Hu and Papageorgiou [9, p. 6]).

Let a : Lr(T,X)→ Lr
′
(T,X∗) be the nonlinear map defined by

a(u)(·) = A(·, u(·)) for all u ∈ Lr(T,X).

Also, let K̂r : Lr(T,X)→ Lr
′
(T,X∗) be defined by

K̂r(u)(·) = ||u(·)||r−2F (u(·)) for all u ∈ Lr(T,X).

Both maps are continuous and monotone, hence maximal monotone (see Gasinski
and Papageorgiou [4, Corollary 3.2.32, p. 320]).

Finally, let B̂ ∈ L (Lr(T,X), Lr
′
(T,X∗)) be defined by

B̂(u)(·) = B(u(·)) for all u ∈ Lr(T,X).

We have

u′′n + a(u′n) + εnK̂r(u
′
n) + B̂un = fn in Lr(T,X∗)(16)

with fn ∈ S2
F (·,un(·),u′n(·)) for all n ∈ N.

From (15) we have

un
w−→ u in Lr(T,X),

⇒ B̂un
w−→ B̂u in Lr

′
(T,X∗) as n→∞.(17)

Also, we have

||K̂r(u
′
n)||Lr′ (T,X∗) = ||u′n||r−1

Lr(T,X),

⇒ εn||K̂r(u
′
n)||Lr′ (T,X∗) = ε

1
r
n

(
ε

1
r
n ||u′n||Lr(T,X)

)r−1

(recall that
1

r
+

1

r′
= 1)

6 ε
1
r
nM

r−1
0 for all n ∈ N (see Proposition 5)

⇒ εn||K̂r(u
′
r)||Lr′ (T,X∗) → 0 as n→∞(18)

From (15) and since v = u′′, we have

(19) u′′n
w−→ u′′ in Lr

′
(T,X∗).
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Finally, hypothesis H(F )(iii) and Proposition 5 imply that

{fn}n>1 ⊆ L2(T,H) is bounded.

By passing to a subsequence if necessary, we may assume that

fn
w−→ f in L2(T,H).

Invoking Proposition 3.9 of Hu and Papageorgiou [8, p. 694], we have

f(t) ∈ convw − lim sup
n→∞

{fn(t)}

6 convw − lim sup
n→∞

F (t, un(t), u′n(t)) for almost all t ∈ T (see (16)).(20)

From (15) we see that

u′n
w−→ u′ in W 1,r′((0, b), X∗).

Recall that W 1,r′((0, b), X∗) ↪→ C(T,X∗). So, it follows that

u′n
w−→ u′ in C(T,X∗)

⇒ u′n(t)
w−→ u′(t) in X∗ for all t ∈ T.(21)

On the other hand, by Proposition 5 we have

|u′n(t)| 6M0 for all t ∈ T, all n ∈ N.

So, by passing to a subsequence (a priori the subsequence depends on t ∈ T ), we
have

u′n(t)
w−→ ŷ(t) in H

⇒ ŷ(t) = u′(t) for all t ∈ T (see (21)).

Hence for the original sequence we have

(22) u′n(t)
w−→ u′(t) in H for all t ∈ T.

We know that {un}n>1 ⊆Wr(0, b) is bounded (see Proposition 5) and recall that
Wr(0, b) ↪→ Lr(T,H) compactly (see (4)). From this compact embedding and from
(22), we obtain

(23) un(t)→ u(t) in H for all t ∈ T as n→∞.

From (20), (22), (23) and hypothesis H(F )(iii) we infer that

f(t) ∈ F (t, u(t), u′(t)) for almost all t ∈ T,
⇒ f ∈ S2

F (·,u(·),u′(·)).

In what follows, we denote by ((·, ·)) the duality brackets for the pair

(Lr(T,X∗), Lr(T,X)).

Acting with u′n − u′ ∈ Lr(T,X) on (16), we have

((u′′n, u
′
n − u′)) + ((a(u′n), u′n − u′)) + ((εnK̂r(u

′
n), u′r − u′)) + ((B̂un, u

′
n − u′))

=

∫ b

0

(fn, u
′
n − u′)dt for all n ∈ N.(24)
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Note that

((u′′n, u
′
n − u′)) =

∫ b

0

〈u′′n, u′n − u′〉dt

=

∫ b

0

〈u′′n − u′′, u′n − u′〉dt+ ((u′′, u′n − u′))

=

∫ b

0

1

2

d

dt
|u′n − u′|2dt+ ((u′′, u′n − u′)) (see Proposition 2)

=
1

2
|u′n(b)− u′(b)|2 + ((u′′, u′n − u′))

(since u′n(0) = u′(0) = u1 for all n ∈ N, see (22))

⇒ lim inf
n→∞

((u′′n, u
′
n − u′)) =

1

2
lim inf
n→∞

|u′n(b)− u′(b)|2 > 0.(25)

Also we have

((B̂(un − u), u′n − u′)) =

∫ b

0

1

2

d

dt
〈B(un − u), un − u〉dt

1

2
〈B(un − u)(b), (un − u)(b)〉 > 0 (see hypothesis H(B))

⇒ ((B̂u, u′n − u′)) 6 ((B̂un, u
′
n − u′)) for all n ∈ N.(26)

Recall that

ε
1
2
n ||un||Lr(T,X) 6M0 for all n ∈ N all r > p (see Proposition 5).

Suppose that rm → +∞, rm > p for all m ∈ N. Then for every n ∈ N, ε
1

rm
n → 1

as m→∞. Invoking Problem 1.175 of Gasinski and Papageorgiou [5], we can find
{mn}n>1 with mn → +∞ such that

ε
1

rmn
n → 1 as n→∞.

Therefore there exists n0 ∈ N such that

1

2
6 ε

1
rmn
n for all n > n0,

1

2
||u′n||Lrmn (T,X) 6M0 for all n > n0,

⇒ ||u′n||Lp(T,X) 6 2M0 for all n > n0 (recall that rmn
> p).

On account of (15) and since y = u′, we have

(27) u′n
w−→ u′ in Lp(T,X).

Then from (26) and (27) it follows that

(28) 0 6 lim inf
n→∞

((B̂un, u
′
n − u′)).

In addition, we have

(29) εnK̂p(u
′
n)→ 0 in Lp

′
(T,X∗) as n→∞ (see (18)).

By Proposition 5 and (27) it follows that

{u′n}n>1 ⊆Wp(0, b) is bounded,

⇒ {u′n}n>1 ⊆ Lp(T,H) is relatively compact (see (4)).
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Therefore we have

u′n → u′ in Lp(T,H) (see (27)),

⇒
∫ b

0

(fn, u
′
n − u′)dt→ 0 as n→∞ (recall that p > 2).(30)

If in (24) we pass to the limit as n→∞ and use (25), (28), (29), (30), then

lim sup
n→∞

((a(u′n), u′n − u′)) 6 0.

Invoking Theorem 2.35 of Hu and Papageorgiou [9, p. 41], we have

(31) a(un)
w−→ a(u′) in Lp

′
(T,X∗) as n→∞.

In (24) we pass to the limit as n→∞ and use (15) (with v = u′′) (27), (29), (31).
We obtain

u′′ + a(u′) + B̂u = f, u(0) = u0, u
′(0) = u1, f ∈ S2

F (·,u(·),u′(·)),

⇒ u ∈ S(u0, u1) 6= ∅.

The proof is now complete. �

3.1. An example. We illustrate the main abstract result of this paper with a
hyperbolic boundary value problem. Let Ω ⊆ RN be a bounded domain. We
consider the following boundary value problem
(32) ∂2u

∂t2
− div (a(t, z)|Dut|p−2Dut) + β(z)ut −∆u = f(t, z, u) + γut in T × Ω,

u|T×∂Ω = 0, u(0, z) = u0(z), ut(0, z) = u1(z),


with ut =

∂u

∂t
, 2 6 p 6∞, γ > 0.

The forcing term f(t, z, ·) need not to be continuous. So, following Chang [1],
to deal with (32), we replace it by a multivalued problem (partial differential inclu-
sion), by filling in the gaps at the discontinuity points of f(t, z, ·). So we define

fl(t, z, x) = lim inf
x′→x

f(t, z, x′) and fu(t, z, x) = lim sup
x′→x

f(t, z, x′).

Then we replace (32) by the following partial differential inclusion
(33) ∂2u

∂t2
− div (a(t, z)|Dut|p−2Dut) + β(z)ut −∆u ∈ [fl(t, z, u), fu(t, z, u)] in T × Ω,

u|T×∂Ω = 0, u(0, z) = u0(z), ut(0, z) = u1(z).


Our hypotheses on the data of (33) are the following:

H(a) : a ∈ L∞(T × Ω), a(t, z) > 0 for almost all (t, z) ∈ T × Ω.

H(β) : β ∈ L∞(Ω), β(z) > 0 for almost all z ∈ Ω.

H(f) : f : T × Ω× R→ R is a function such that

(i) fl, fu are superpositionally measurable (that is, for all u : T × Ω → R
measurable, the functions (t, z) 7→ fl(t, z, u(t, z)), fu(t, z, u(t, z)) are both
measurable);

(ii) there exists a ∈ L2(T × Ω) such that

|f(t, z, x)| 6 a2(t, z)(1 + |x|) for almost all (t, z) ∈ T × Ω, all x ∈ R.
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Let X = W 1,p
0 (Ω), H = L2(Ω) and X∗ = W−1,p′(Ω). Then (X,H,X∗) is an

evolution triple with X ↪→ H compactly (by the Sobolev embedding theorem).
Let A : T ×X → X∗ be defined by

〈A(t, u), h〉 =

∫
Ω

a(t, z)|Du|p−2(Du,Dh)RNdz+

∫
Ω

β(z)uhdz for all u, h ∈W 1,p
0 (Ω).

Then A(t, u) is measurable in t ∈ T , continuous and monotone in u ∈ W 1,p
0 (Ω)

(hence, maximal monotone) and 〈A(t, u), u〉 > 0 for almost all t ∈ T , all u ∈
W 1,p

0 (Ω).
Let B ∈ L (X,X∗) be defined by

〈Bu, h〉 =

∫
Ω

(Du,Dh)RNdz for all u, h ∈W 1,p
0 (Ω).

Clearly, B satisfies hypothesis H(B).
Finally, let G(t, z, x) = [fl(t, z, x), fu(t, z, x)] and set

F (t, u, v) = S2
G(t,·,u(·)) + γv for all u, v ∈ L2(Ω).

Hypothesis H(f) implies that F satisfies H(F ).
Using A(t, u), Bu and F (t, u, v) as defined above, we can rewrite problem (33)

as the equivalent second order nonlinear evolution inclusion (1). Assuming that

u0 ∈ W 1,p
0 (Ω) and that u1 ∈ L2(Ω), we can use Theorem 6 and infer that problem

(30) has a solution u ∈ C1(T, L2(Ω)) ∩ C(T,W 1,p(Ω)) with
∂u

∂t
∈ Lp(Ω,W 1,p

0 (Ω))

and
∂2u

∂t
∈ Lp

′
(Ω,W−1,p′(Ω)).

Note that if a = 0, f(t, z, x) = x and γ = 0, then we have the Klein-Gordon
equation. If f(t, z, x) = f(x) = η sinx with η > 0, then we have the sine Gordon
equation.
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