MAŠČOBNE KISLINE IN OLJA KOT GLAVNA SESTAVINA PREHRANSKIH DOPOLNIL

Martina Puc
Tjaša Lipovšek
Tina Thaler
Zala Vidic
Alan Kacin
Petra Golja
Maščobne kisline in olja kot glavna sestavina prehranskih dopolnil

Avtorji: Martina Puc, Tjaša Lipovšek, Tina Thaler, Zala Vidič, Alan Kacin, Petra Golja
Izdal in založil: Založba COVIRIAS, Parmova 14, 1000 Ljubljana
www.pretehtajte.si, telefon: 01 23 22 097, info@covirias.si
Ljubljana, avgust 2018

1. izdaja
Brezplačna publikacija

Publikacija je izdana v elektronski obliki v formatu pdf.
Publikacija je objavljena na spletni povezavi: www.pretehtajte.si

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani
COBISS.SI-ID=296299264
KAZALO VSEBINE

1 VLOGA MAŠČOB IN MAŠČOBNIH KISLIN V PREHRANI ... 7
 1.1 PREHRANSKE MAŠČOBE ... 8
 1.2 MAŠČOBNKE KISLINE ... 9
 1.2.1 Nomenklatura maščobnih kislin ... 10
 1.2.2 Nasičene maščobne kisline (NMK) ... 11
 1.2.3 Nenasiciene maščobne kisline ... 12
 1.2.4 Trans maščobne kisline (TMK) ... 14
 1.2.5 Stabilnost in shranjevanje maščob .. 15
 1.3 PRIPOROČILA ZA VNOS MAŠČOB IN MAŠČOBNIH KISLIN .. 16
 1.3.1 Doseganje priporočenih vnosov omega 3 maščobnih kislin ... 18

2 RIBJA OLJA IN OLJA IZ MORSKIH ORGANIZMOV ... 21
 2.1 RIBE KOT VIR PRIDOBIVANJA OLJA .. 21
 2.2 DRUGI MORSKI ORGANIZMI KOT VIR PRIDOBIVANJA OLJA ... 22
 2.3 PRIDOBIVANJE RIBJEGA OLJA TER POSEBNOSTI V PRIDOBIVANJU OLJ IZ DRUGIH MORSKIH ORGANIZMOV ... 23
 2.3.1 Postopki pridobivanja ribjega olja ... 23
 2.3.2 Pridobivanje olj iz posameznih ribjih delov in drugih morskih živalskih organizmov ... 25
 2.3.3 Vpliv pogojev pridobivanja na sestavo in kakovost ribjih olj ... 26
 2.4 KEMIJSKA SESTAVA IN LASTNOSTI RIBJIH OLJ TER POSEBNOSTI V SESTAVI OLJ IZ DRUGIH MORSKIH ORGANIZMOV ... 26
 2.4.1 Maščobne kisline .. 27
 2.4.2 Negliceridne snovi v ribjih oljih ... 29
 2.4.3 Lastnosti ribjih olj .. 29
 2.4.4 Sestava olj iz drugih morskih organizmov ... 30
 2.5 VLOGA IN KOLIČINA RIB IN RIBJIH OLJ V PREHRANI ... 31
 2.6 PREHRANSKA DOPOLNILA Z RIBJIM OLJEM OZIROMA MAŠČOBNIMI KISLINAMI ... 32
 2.6.1 Glavne sestavine .. 34
 2.6.2 Kakovost .. 34
 2.6.3 Prehranska dopolnila z ω-3 maščobnimi kislinami na slovenskem trgu 35

3 ALGE KOT VIR DOLGOVERIŽNIH VEČKRAT NENASIČENIH MAŠČOBNIH KISLIN 42

4 RASTLINSKA OLJA ... 44
 4.1 PRIDELAVA IN PREDELAVA RASTLINSKIH OLJ ... 44
 4.1.1 Pridobivanje olj in maščobnih kislin .. 45
 4.1.2 Transport .. 45
 4.1.3 Rafiniranje .. 46
 4.1.4 Modifikacija in bogatenje .. 46
 4.2 POIMENOVANJE RASTLINSKIH OLJ IN OZNAČEVANJE PROIZVODOV, KI VSEBUJEJO RASTLINSKA OLJA .. 47
4.2.1 Poimenovanje rastlinskih olj ... 47
4.2.2 Označevanje proizvodov, ki vsebujejo rastlinska olja .. 48
4.3 KEMIJSKA SESTAVA IN LASTNOSTI RASTLINSKIH OLJ 49
4.3.1 Kakovost olj ... 49
4.4 POSAMEZNA RASTLINSKA OLJA ... 50
 4.4.1 Olje pšeničnih kalčkov .. 55
 4.4.2 Svetlinovo olje .. 55
 4.4.3 Boragino olje ... 56
 4.4.4 Olje črne kumine .. 57
 4.4.5 Česnovo olje .. 57
 4.4.6 Laneno olje .. 58
 4.4.7 Konopljino olje ... 59
 4.4.8 Olje grozdnih pečk .. 59
 4.4.9 Ričkovo olje ... 60
4.5 RASTLINSKA OLJA IN DRUGE MAŠČOBE V PREHRANSKIH DOPOLNILIH NA SLOVENSKEM TRGU .. 61
5 VIRI ... 66
KAZALO PREGLEDNIC

Preglednica 1: Poimenovanje najpogostejših maščobnih kislin s cis-konfiguracijo 10
Preglednica 2: Najpogostejše in prehransko najpomembnejše nasičene maščobne kisline... 11
Preglednica 3: Najpogostejše in prehransko najpomembnejše enkrat nenasičene maščobne kisline .. 12
Preglednica 4: Najpogostejše in prehransko najpomembnejše večkrat nenasičene maščobne kisline .. 13
Preglednica 5: Maščobno kislinska sestava nekaterih prehransko pomembnih olj in masti. Naveden je utežni odstotek glede na skupne maščobne kisline (%) .. 15
Preglednica 6: Priporočila za vnos maščob in maščobnih kislin v prehrani odraslih 17
Preglednica 7: Referenčne in izračunane vrednosti, s katerimi zadostimo potrebam po dnevnom vnosu esencialnih maščobnih kislin za 25-50 let starega zmerno telesno dejavnega moškega ... 20
Preglednica 8: Vsebnost dolgoverižnih večkrat nenasičenih maščobnih kislin v različnih jedilnih oljih (g/100 g maščobe) ... 28
Preglednica 9: Sestava maščobnih kislin v krilovem olju in olju iz lignjev (% vseh maščobnih kislin) .. 30
Preglednica 10: Poimenovanje rastlinskih vrst v latinščini ter surovin, rastlinskih olj in masti v angleščini .. 48
Preglednica 11: Primerjava maščobno kislinske sestave izbranih rastlinskih olj v odstotkih .. 52
Preglednica 12: Sestava maščobnih kislin v olju lanenih semen in olja borage v odstotkih .. 59
Preglednica 13: Vsebnost maščobnih kislin v olju iz semen rička (Camelina sativa) glede na različne analize .. 61
Grafični prikaz 1: Delež enokomponentnih, večkomponentnih in multikomponentnih prehranskih dopolnil v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.................................36
Grafični prikaz 2: Delež prehranskih dopolnil v kategoriji Maščobne kisline glede na navedbo države proizvajalca po podatkih baze P3 Professional za julij 2018.................................36
Grafični prikaz 3: Delež različnih tehnoloških oblik prehranskih dopolnil v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.................................37
Grafični prikaz 4: Povprečna, najnižja in najvišja maloprodajna cena prehranskih dopolnil v kategoriji Maščobne kisline po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.................................38
Grafični prikaz 5: Delež prehranskih dopolnil v kategoriji Maščobne kisline glede na vir ω-3 maščobnih kislin po podatkih baze P3 Professional za julij 2018.................................39
Grafični prikaz 6: Število prehranskih dopolnil z deklarirano vsebnostjo EPK, DHK in/ali ω-3 maščobnimi kislinami, rangiranimi v skupine vsebnosti le-neh v mg, v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.................................39
Grafični prikaz 7: Primerjava povprečne, najnižje in najvišje maloprodajne cene enokomponentnih prehranskih dopolnil v kategoriji Maščobne kisline glede na to, ali imajo certifikat kakovosti proizvodnje ali ne, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.................................41
Grafični prikaz 8: Prikaz deležev izdelkov v kategoriji Maščobe glede na tehnološko obliko po podatkih baze P3 Professional za julij 2018.................................63
Grafični prikaz 9: Prikaz števila izdelkov v kategoriji Maščobe v tekoči obliki, ki se dozirajo s čajno žličko glede na priporočeno dozirno shemo po podatkih baze P3 Professional za julij 2018.................................63
Grafični prikaz 10: Primerjava povprečne, najnižje in najvišje maloprodajne cene rastlinskih olj, ki se tržijo kot prehranska dopolnila, in sodijo v kategorijo Maščobe, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.................................64
Grafični prikaz 11: Primerjava povprečne, najnižje in najvišje maloprodajne cene rastlinskih olj, ki se tržijo kot prehranska dopolnila, in sodijo v kategorijo Maščobe, glede na to, ali imajo certifikat kakovosti proizvodnje ali ne, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.................................64
1 VLOGA MAŠČOB IN MAŠČOBNIH KISLIN V PREHRANI

V prehranski piramidi, kot prikazu razmerij vnosov različnih skupin živil v zdravi in uravnoteženi prehrani, ki se uradno uporabljaja v Sloveniji (NIJZ, 2018) so maščobna živila tik pod samim vrhom, ovenčanim s sladkorji oz. sladicami. Eksplcitno so v njej kot primeri naštete različne vrste kakovostnih rastlinskih olj, surovo maslo, mehka margarina, ki naj bi jih, tako kot tudi oreščke, olive in semena, uživali v manjših količinah.

Tako pod to skupino živil je v prehranski piramidi skupina, ki vključuje meso, ribe in njihove zamenjave, uživali pa naj bi jih tedensko, in sicer od 3 do 5 enot na dan. Ena enota je v primeru rib opredeljena s primerom 1 sardele oz. pol srednje velike postrvi.

Sicer imajo maščobe v prehrani vlogo makrohranil, saj naj bi jih v telo vnašali v gramskih količinah, pri čemer moramo upoštevati njihovo visoko energijsko gostoto, za razliko od maščobnih kislin, pri katerih govorimo o vnosih v mg količinah (Ribič, 2009; EFSA, 2010) in jih tako lahko uvrstimo v skupino mikrohranil.

Tako kot EFSA v prej citiranem strokovnem mnenju navaja, da ima večina držav ločena priporočila za celokupen vnos maščob, nasičenih in drugih maščobnih kislin, je to različno potrebo po vnosih maščob oz. maščobnih kislin potrebno upoštevati tako pri oblikovanju formulacij prehranskih dopolnil kot tudi pri presoji uporabe konkretnih izdelkov pri konkretnih posameznikih glede na njihovo siceršnjo prehrano in življenjski slog. Navedeno je eden od razlogov za oblikovanje ločeni kategorij prehranskih dopolnil, in sicer Maščobe, maščobna olja, rastlinski steroli in Maščobne kisline1 (P3 Professional, 2018).

Eno od pomembnih vprašanj za uvrstitve nekega izdelka med prehranska dopolnila je koncentriranje nekega hranila oz. snovi s fiziološkim učinkom (Pravilnik o prehranskih dopolnilih Ur. l. RS št. 66/2013, Direktiva 2002/46/ES). Ker so viri maščobnih kislin različne maščobe, moramo zato v prvi vrsti razumeti njihovo kemijsko sestavo, da bi lahko presojali možnosti koncentriranja enih in drugih. S poznavanjem postopkov pridobivanja in sestavo posameznih maščob zaokrožimo razumevanje vloge maščobnih kislin in maščob na splošno v prehranskih dopolnilih kot glavnih sestavin v posamezni formulaciji oz. izpostavljene kategorije prehranskih dopolnil kot celote, ki nam daje osnovno podlago za študij njihovega vpliva na človeško zdravje v nadaljevanju.

1 Avtorica P3 kategorij in sistema P3 Professional je Martina Puc. Avtorske pravice opredelitve kategorij so pridržane.
1.1 PREHRANSKE MAŠČOBE

Maščobe iz prehrane so pomemben vir strukturnih komponent naših celic, pomagajo pri razvoju in delovanju možganov (kar 60 % možganov sestavlja maščoba), določene oblike pomagajo pri ohranjanju zdravega srca in krvnih žil, so podpora pri absorpciji v maščobah topnih vitaminov (A, D, E in K), predvsem pa so pomemben vir energije (EUFIC, 2016). Maščobe imajo najvišjo enerгиjsko vrednost, saj 1 g maščob sprosti 9 kcal (37 kJ) energije, kar je 2,3 x več od 1 g beljakovin ali 1 g ogljikovih hidratov (v obeh primerih se sprosti 4 kcal (17 kJ) energije) (OPKP). Prehranske maščobe povečujejo energijsko gostoto hrane, posledično pa upočasnijo praznjenje želodca in gibljivost črevesja. Zagotavljajo tudi esencialne maščobne kisline, ki jih telo samo ne more sintetizirati (Food, nutrition ..., 2007). Maščoba v prehrani je obenem tudi nosilec okusa in arom, kar prispeva k priljubljenosti jedi z večjo vsebnostjo maščob. Prav tako pripomorejo tudi k boljši teksturi (Referenčne vrednosti ..., 2004).

Maščobe so večinoma sestavljene iz trigliceridov (vse tri OH skupine glicerola so zaestrene z maščobnimi kislinami), v manjšem deležu (1-2 %) pa so prisotne tudi negliceridne komponente (npr. tokoferoli, pigmenti, fosfolipidi, steroli, fosfatidi, antioksidanti...). Izjema so posamezna rastlinska olja (bombaževol in sojino olje), kjer je lahko delež negliceridnih sestavin tudi do 3,5 % (Lobb in Chow, 2007; Martinčič, 2002). Osnovno molekulo triglicerida tvori glicerol, spojina s tremi hidroksilnimi skupinami, na katere se z estrsko vezjo vežejo maščobne kisline (Boyer, 2005). Maščobne kisline predstavljajo največji, 96 % masni delež v molekuli triglicerida, glicerol pa preostanek (Food, nutrition ..., 2007). Proces esterifikacije, torej vezave maščobnih kislina na glicerol, poteka postopoma, tako da nastanejo vmesni monogliceridi in digliceridi. Prehranske maščobe, ki obstajajo v naravi, sestavljajo skoraj izključno mešani tri gliceridi (na glicerol sta z estersko vezjo vezani dve ali tri različne maščobne kisline), medtem ko so enostavni trigliceridi, ki imajo vezane tri enake maščobne kisline, v naravi redke. Absorpcija trigliceridov pri zdravih ljudeh je 98 % (Boyer, 2005; Referenčne vrednosti ..., 2004).

Izraz »maščobe« običajno uporabljamo za masti in olja. Fizikalne in kemijske lastnosti masti ter olj so določene z njihovo kemijsko strukturo, to je dolžino in strukturo maščobnih kislin (polojaz in število dvojnih oz. enojnih vezi). Maščobne kisline, ki vsebujejo samo enojne vezi, so ravne in zato oblikujejo relativno trdno in stabilno strukturo. Vsaka dvojna vez v maščobni kislini, pa povzroči pregib ogljikove verige in več kot jih je, težje se maščobne kisline združujejo skupaj, kar pomeni manj trdno in manj stabilno strukturo. V masteh, ki so

2 Enetgijska gostota hrane nam pove, koliko energije ima določeno živilo ali določena vrsta hrane na prostorninsko enoto.
3 Navedena informacija ni dovolj, da bi sklepali o vplivu posameznih živil na hitrost prebave, saj na primer v določeni meri velja tudi, da mastna hrana lahko pospeši prehod skozi črevesje.
običajno živalskega izvora, prevladujejo kratkoverižne maščobne kisline s samimi enojnimi vezmi, zato so pri sobni temperaturi (20 °C) trdna, medtem ko olja, ki običajno izvirajo iz rastlin in morskih organizmov, vsebujejo srednje in dolgoverižne maščobne kisline, z eno ali več dvojnimi vezmi, zato so pri sobni temperaturi tekoča. Izjem ni med rastlinskimi olji sta palmino in kokosovo olje, ki vsebujejo relativno večjo količino maščobnih kislin s samimi enojnimi vezmi. V zmernih podnebnih razmerah sta zato pri sobni temperaturi delno trdni, medtem ko sta v tropskem podnebju, tam, kjer rasteta palma in kokos, tekoči (Food nutrition ..., 2007).

1.2 MAŠČOBNE KISLINE

Maščobne kisline so biološke molekule in so najpomembnejša komponenta prehranskih maščob. Vsebujejo polarno karboksilno skupino (\(-\text{COOH}\)), vezano na enem koncu nerazvejane ogljikovodikove verige. Te strukturne lastnosti jim dajejo dvojno naravo. Konec, na kateri je vezana karboksilna skupina, je polaren in topen v vodi, medtem ko ima nasprotni konec ogljikovodikove verige nepolarne lastnosti, zaradi katerih je lipofilen in je nevodotopen. Število ogljikovih (C) atomov v maščobnih kislinah je lahko od 4 do 36, med seboj pa so povezani samo z enojnimi vezmi (takrat govorimo o nasičenih maščobnih kislinah) ali pa z eno ali več dvojnimi vezmi (takrat govorimo o nenasičenih maščobnih kislinah). Nenasičene maščobne kisline imajo ob dvojni vezi dve možni konfiguraciji – cis in trans, ki sta določeni glede na položaj dveh enakih atomov ali funkcionalnih skupin v ogljikovi verigi, pri čemer je v naravnih maščobnih kislinah skoraj vedno prisotna cis-konfiguracija (Boyer, 2005). Večina maščobnih kislin, ki jih najdemo v naravi, vsebuje med 12 in 24 ogljikovih atomov, med katerimi so tiste s 16 in 18 ogljikovimi atomi najpogostejše.

Maščobne kisline delimo na več načinov in sicer glede na (FAO, 2010):

1. Stopnjo nasičenosti
 - Nasičene maščobne kisline (vse vezi med ogljikovimi atomi so enojne)
 - Nenasičene maščobne kisline (poleg enojnih vezi so v ogljikovodikovi verigi prisotne tudi dvojne vezi)
 - Enkrat nenasičene maščobne kisline (prisotna je ena dvojna vez)
 - Večkrat nenasičene maščobne kisline (prisotna sta dve ali več dvojnih vezi)

2. Dolžino verige
 - Kratkoverižne (do 8 C atomov)
 - Srednjeverižne (8 do 12 C atomov)
 - Dolgoverižne (več kot 12 atomov)
3. **Položaj dvojne vezi** (štejemo, na katerem C atomu je prva dvojna vez glede na metilni konec)
 - Omega 3 (ω-3)
 - Omega 6 (ω-6)
 - Omega 9 (ω-9)

4. **Konfiguracijo ob dvojni vezi**
 - Cis (vodikova atoma ob dvojni vezi sta vezana na isti strani)
 - Trans (vodikova atoma ob dvojni vezi sta vezana na nasprotnih straneh)

1.2.1 **Nomenklatura maščobnih kislin**

Preglednica 1: Poimenovanje najpogostejših maščobnih kislin s cis-konfiguracijo (Gunstone, 2013)

<table>
<thead>
<tr>
<th>Trivialno ime</th>
<th>Sistematsko ime</th>
<th>Okrajšan simbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasičene MK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavrinska kislina</td>
<td>dodekaenojska kislina</td>
<td>12:0</td>
</tr>
<tr>
<td>Miristinska kislina</td>
<td>tetradekanojska kislina</td>
<td>14:0</td>
</tr>
<tr>
<td>Palmitinska kislina</td>
<td>heksadekanojska kislina</td>
<td>16:0</td>
</tr>
<tr>
<td>Stearinska kislina</td>
<td>oktadekanojska kislina</td>
<td>18:0</td>
</tr>
</tbody>
</table>
Mesto dvojnih vezi v ogljikovodikovi verigi je v večini maščobnih kislin stalno. Pri enkrat nenasičenih maščobnih kislinah se dvojna vez najpogosteje pojavlja med devetim in desetim ogljikovim atomom, pri dvakrat nenasičenih maščobnih kislinah še med dvanajstim in trinajstim, pri trikrat nenasičenih maščobnih kislinah pa še med petnajstim in šestnajstim ogljikovim atomom. Izjeme pri tem vzorcu so večkrat nenasičene maščobne kisline z 20 ali več C atomi. Pri večkrat nenasičenih maščobnih kislinah dvojne vezi niso konjugirane, pri njih torej ne opazimo vzorca zaporednega menjavanja dvojne in enojne vezi v molekuli, ampak so ločene z metilensko skupino (-CH=CH-CH2-) (Boyer, 2005).

1.2.2 Nasičene maščobne kisline (NMK)

Nasičene maščobne kisline imajo med ogljikovimi atomi enojne vezi. So dolge, ravne in stabilne, pri sobni temperaturi pa običajno v trdnem stanju, zato tvorijo masti. (Food, nutrition..., 2007). Nasičene maščobne kisline se sicer večinoma vnašajo s hrano, lahko pa se tvorijo tudi v telesu z lipogenezo iz glukoze (Referenčne vrednosti ..., 2004). V Preglednici 2 so predstavljene najpogosteješše in prehransko najpomembnejše nasičene maščobne kisline.

Preglednica 2: Najpogostejše in prehransko najpomembnejše nasičene maščobne kisline (FAO, 2010)

<table>
<thead>
<tr>
<th>Trivialno ime maščobne kisline</th>
<th>Kratka oznaka</th>
<th>Prehranski vir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maslena kisлина</td>
<td>4:0</td>
<td>mlečna maščoba</td>
</tr>
<tr>
<td>Kapronska kisлина</td>
<td>6:0</td>
<td>mlečna maščoba</td>
</tr>
<tr>
<td>Kaprilna kisлина</td>
<td>8:0</td>
<td>mlečna maščoba, kokosovo olje, palmino olje</td>
</tr>
<tr>
<td>Kaprinska kisлина</td>
<td>10:0</td>
<td>mlečna maščoba, kokosovo olje, palmino olje</td>
</tr>
<tr>
<td>Lavrinska kisлина</td>
<td>12:0</td>
<td>palmovo olje, kokosovo olje</td>
</tr>
<tr>
<td>Miristinska kisлина</td>
<td>14:0</td>
<td>mlečna maščoba, kokosovo olje, palmino olje, kakavovo maslo</td>
</tr>
<tr>
<td>Palmitinska kisлина</td>
<td>16:0</td>
<td>večina maščob in olj, palmino olje</td>
</tr>
<tr>
<td>Stearinska kisлина</td>
<td>18:0</td>
<td>mast, goveji loj, hidrogenirana rastlinska olja</td>
</tr>
<tr>
<td>Arahidna kisлина</td>
<td>20:0</td>
<td>arasidovo olje</td>
</tr>
</tbody>
</table>
Nasičene maščobne kisline se prvenstveno nahajajo v živalskih virih (meso, jajca, maslo) in v predelanih živilih, proizvedenih z rastlinskimi olji, ki naravno vsebujejo več nasičenih maščobnih kislin (Vannice in Rasmussen, 2014). Maščobne kisline s 4 do 12 C atomi se nahajajo predvsem v mlečni maščobi in kokosovem olju (FAO, 2010). Najpogostejši maščobni kisline - lavrinska in miristinska, se nahajata v različnih rastlinskih in živalskih maščobah (Lobb in Chow, 2007). V živalski maščobi, kot je maslo, svinjska mast in goveji loj, prevladujeta palmitinska in stearinska kislina. S stearinsko kislino sta bogata tudi goveji loj (19 %) in kakavovo maslo (33 %). Vir nasičenih maščobnih kislin so tudi olja iz tropskih rastlin (npr. palmino olje), ki se največkrat uporablja v industriji zaradi dobrih tehnoloških lastnosti (daljša obstojnost zaradi oksidacijske stabilnosti) (Vannice in Rasmussen, 2014).

1.2.3 Nenasičene maščobne kisline

1.2.3.1 Enkrat nenasičene maščobne kisline (ENMK)

Enkrat nenasičene maščobne kisline so tiste, ki v ogljikovodikov verigi vsebujejo eno dvojno vez (Preglednica 3). Najpogostejša je oleinska kislina, ki jo vsebujejo takoj rastlinska kot tudi živalska tkiva (FAO, 2010). V večjih količinah je prisotna v olivnem (70,7%) in repičnem olju (63,5 %), prav tako pa jo vsebujejo tudi mandlji in avokado. V govejem loju, svinjski masti in palminem olju je oleinske kisline vsaj 30 %, več kot 20 % pa jo vsebuje tudi sojino in koruzno olje. V hrani so sicer v manjših koncentracijah prisotne tudi nekatere druge enkrat nenasičene maščobne kisline. Takšna je npr. eruka kislina (22:1 ω-9), ki je škodljiva (Vennice in Rasmussen, 2014). Raziskave na živalih so namreč pokazale, da uživanje olj z eruko kislino s časoma lahko pripelje do srčnega obolenja (nalaganje maščobnih kapljic v srčna mišična vlakna), kar vodi v srčno kap (EFSA, 2016). Naravno je v manjših koncentracijah prisotna v repičnih semenih, ohrovtu in brokoliju. V repičnem olju jo z genetsko modifikacijo odstranijo, zato je vsebnost le-te v prehrani skoraj nična (Vannice in Rasmussen, 2014).

Preglednica 3: Najpogostejše in prehransko najpomembnejše enkrat nenasičene maščobne kisline (FAO, 2010)

<table>
<thead>
<tr>
<th>Trivialno ime maščobne kislina</th>
<th>Kratka oznaka</th>
<th>Prehranski vir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmitooleinska kislina</td>
<td>16:1 (\Delta^9)</td>
<td>ribja olje, olje makadamija, večina živalskih maščob in rastlinskih olj</td>
</tr>
<tr>
<td>Oleinska kislina</td>
<td>18:1 (\Delta^9)</td>
<td>vse masti in olja, še posebno olivnolje, oleinsko sončično olje, repično olje, zafrankino olje</td>
</tr>
<tr>
<td>Gadoleinska kislina</td>
<td>20:1 (\Delta^8) /20:1 (\Delta^{11})</td>
<td>ribja olja</td>
</tr>
<tr>
<td>Eruka kislina</td>
<td>22:1 (\Delta^{13})</td>
<td>repično olje z veliko eruka kisline (ind. olje), gorčično olje</td>
</tr>
<tr>
<td>Nervonska kislina</td>
<td>24:1 (\Delta^{15})</td>
<td>ribja olja</td>
</tr>
</tbody>
</table>
Večkrat nenasičene maščobne kisline (VNMK)

Večkrat nenasičene maščobne kisline v ogljikovodikov verigi vsebujejo dve ali več dvojnih vezi, ki povzročajo ukrivljanje ogljikove verige, kar posledično pomeni manj trdne strukture (Preglednica 4). Te maščobne kisline so pri sobni temperaturi običajno v tekočem stanju, zato tvorijo olja (Food, nutrition..., 2007).

Večkrat nenasičeni maščobni kislini linolna (ω-6) in α-linolenska (ω-3) kisлина se pojavljata v skoraj vseh prehranskih maščobah. α-linolenska maščobna kisлина je prisotna v rastlinskih hrani, kot so oreški, orehi, lan, konopljina semena in v rastlinskih oljih (sojino in repično olje), linolna pa v sojinem in koruznem olju ter žafrankinem olju (Vannice in Rasmussen, 2014). Najpomembnejša ω-6 večkrat nenasičena maščobna kisлина je arahidonska kisлина, saj je primarni prekurzor za tkivne hormone vrste ω-6 (eikozanoide). V nizkih koncentracijah je prisotna v mesu, jajcih, ribah, algah in ostalih morskih organizmih. Najpomembnejši ω-3 maščobni kislini v prehrani človeka sta EPK in DHK (Preglednica 1), ki se nahajata v mastnih morskih ribah. Vir dolGOverižnih večkrat nenasičenih maščobnih kislin (tj. maščobnih kislin z 20 in več C atomi) so tudi olja alg in morskih enoceličnih organizmov. Kot novejši vir dolGOverižnih večkrat nenasičenih maščobnih kislin se bodo v prihodnosti zagotovo pojavila tudi genetsko modificirana olja iz gensko spremenjene soje in ostalih rastlin (FAO, 2010).

Človeško telo lahko sintetizira nasičene maščobne kisline, ki imajo med 14 in 18 C atomov in enkrat nenasičene maščobne kisline (oleinsko, C18:1 ω-9). Večkrat nenasičene maščobk kisline s cis konfiguracijo pa so esencialne hranljive snovi, ker jih človeški organizem ne more sintetizirati sam in jih moramo nujno zaužiti s hrano. V skupini ω-6 je najpomembnejša esencialna maščobna kisлина linolna (C18:2 ω-6), ki se z elongacijo in desaturacijo lahko pretvori v arahidonsko maščobno kisline (C20:4 ω-6). V skupini ω-3 pa je najpomembnejša esencialna maščobna kisлина α-linolenska maščobna kisлина (C18:3 ω-3), ki je prekurzor za EPK (20:5 ω-3) in DHK (22:6 ω-3) (Referenčne vrednosti ..., 2004; FAO, 2010). Konverzija esencialnih maščobnih kislin ni najbolj učinkovita, saj se le okoli 5-15 % α-linolenske kisline pretvori v EKP in le 1 % v DHK. Prav zato lahko slednjo v mnogih stanjih, v katerih so potrebe po DHK večje (s povečanimi potrebami po DHK naj bi se soočale nosečnice, dojenčki, majhni otroki), obravnavamo kot esencialno maščobno kisлиno (Vannice in Rasmussen, 2014).

Preglednica 4: Najpogostejše in prehransko najpomembnejše večkrat nenasičene maščobne kisline (FAO, 2010)

<table>
<thead>
<tr>
<th>Trivialno ime maščobne kisline</th>
<th>Kraja oznaka</th>
<th>Prehranski vir</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω-6 maščobne kisline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linolna kisлина</td>
<td>18:2Δ9,12</td>
<td>večina rastlinskih olj</td>
</tr>
<tr>
<td>γ-linolenska kisлина</td>
<td>18:3Δ6,9,12</td>
<td>svetlinovo olje, boragino olje, olje črnega ribeza</td>
</tr>
<tr>
<td>Dihomo-γ-linolenska kisлина</td>
<td>20:3Δ11,14</td>
<td>živalska tkiva</td>
</tr>
<tr>
<td>Arahidonska kisлина (AA)</td>
<td>20:4Δ5,8,11,14</td>
<td>živalska maščoba, jetra, jajčne maščobe, ribe</td>
</tr>
<tr>
<td>ω-3 maščobne kisline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-linolenska kisлина</td>
<td>18:3Δ6,9,12,15</td>
<td>laneno olje, sojino olje, repično olje</td>
</tr>
<tr>
<td>Trivjalno ime maščobne kisline</td>
<td>Krajša oznaka</td>
<td>Prehranski vir</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Steroidonska kislina</td>
<td>18:4Δ6,9,12,15</td>
<td>ribja olja, sojino olje, olje črnega ribeza, konopljino olje</td>
</tr>
<tr>
<td>Eikozapentaenjska kislina (EPK)</td>
<td>20:5Δ5,8,11,14,17</td>
<td>mastne ribe (losos, slanik, sardele, skuša, snetec)</td>
</tr>
<tr>
<td>Dokozapentaenojska kislina (DPK)</td>
<td>22:5Δ7,10,13,16,19</td>
<td>mastne ribe (losos, slanik, sardele, skuša, snetec)</td>
</tr>
<tr>
<td>Dokozaheksaenjska kislina (DHK)</td>
<td>22:6Δ4,7,10,13,16,19</td>
<td>mastne ribe (losos, slanik, sardele, skuša, snetec)</td>
</tr>
</tbody>
</table>

1.2.4 Trans maščobne kisline (TMK)

Trans maščobne kisline sodijo v skupino nenasičenih maščobnih kislin, saj imajo v svoji strukturi eno ali več dvojnih vezi (Filip in Vidrih, 2015). Kot že prej navedeno, se lahko okoli ene dvojne vezi pojavi ena izmed dveh konfiguracij (trans ali cis). Trans maščobne kisline so po svoji obliki podobne nasičenim maščobnim kislinam, saj ne pride do preloma v molekuli, kot pri cis konfiguraciji. Linearne molekule se enostavneje združujejo skupaj, kar vodi do višjega tališča (posledično trdne strukture pri sobni temperaturi), medtem ko se molekule s cis konfiguracijo zaradi preloma težje združujejo, zato je tališče nižje (Masanori 2002).

Trans maščobne kisline delimo na naravne in umetno oz. industrijsko proizvedene (Filip in Vidrih, 2015). Delna hidrogenacija nenasičenih maščobnih kislin (biohidrogenacija) poteka v vampu pod vplivom bakterij, zato so trans maščobne kisline naravno prisotne v mleku in mesu prežvekaolcev. Najbolj poznana je konjugirana linolna kislina (CLA), ki je v majhnih količinah (0,3-0,6 %) prisotna v mleku (Pavčič, 2015). Umetno pa nastajajo med industrijsko delno hidrogenacijo rastlinskih olj, ki poteka ob prisotnosti vodika, katalizatorjev in visokih temperatur. Gre za proces vezave vodika na dvojne vezi in posledično zmanjševanje števila dvojnih vezi. Med procesom prihaja tudi do izomerizacije (preostale dvojne vezi v verigi se prestavijo na različna mesta) in s tem tvorba različnih geometrijskih izomer (posledično tudi nastanek trans maščobnih kislin) (Masanori, 2002). Delno hidrogenirana olja so v živilski industriji zaželena predvsem zaradi dolge obstojnosti, oksidativne stabilnosti in poltrdega stanja pri sobni temperaturi (Trattner in sod., 2015).

V prehrani trans maščobne kisline izvirajo predvsem iz delno hidrogeniranih olj, ki se uporabljajo v proizvodnji margarine, olj za cvrenje in hrane pripravljene s pomočjo surovin, ki vsebujejo trans maščobne kisline (Filip in Vidrih, 2015). Tako je veliko živil, ki zaradi sestavin ali postopkov, s katerimi so proizvedena, vsebujejo precežno količino trans maščobnih kislin (npr.: izdelki iz listnatega testa, ovčrt krompir, krekerji, solatni preliv, različni namazi, pecivo, torte, napolitanke, bolj mastni slani prigrizki) (Filip in Vidrih, 2015; NIJZ, 2016a). Zaradi tveganj, ki trans maščobe v prehrani predstavljajo za zdravje ljudi, na podlagi Nacionalnega programa o prehrani in telesni dejavnosti za zdravje 2015-2025 (Resolucija o nacionalnem programu..., 2015), NIJZ izvaja sklop sistematičnih ukrepov za zmanjšanje transmaščob v prehrani (NIJZ, 2016a).
1.2.5 Stabilnost in shranjevanje maščob

Olja in masti klasificiramo kot mešanice trigliceridov (DeMan, 2007). Kot prikazuje Preglednica 5, imajo olja in masti različno maščobno kislinsko sestavo, kar posledično vpliva na njihovo stabilnost (oksidacijsko in toplotno), zaradi česar moramo biti pozorni pri shranjevanju in uporabi maščob (npr. pri cvrenju, hladni uporabi ...).

Preglednica 5: Maščobno kislinsko sestavo nekaterih prehransko pomembnih olj in masti. Naveden je utežni odstotek glede na skupne maščobne kisline (%) (Salobir, 2001; Vannice in Rasmussen, 2014)

<table>
<thead>
<tr>
<th>Vrsta maščobe</th>
<th>Nasičene maščobne kisline</th>
<th>Tenasičene maščobne kisline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C10 in krajše</td>
<td>C12:0 lavriinska</td>
</tr>
<tr>
<td>Goveji loj</td>
<td>0,9</td>
<td>3,5</td>
</tr>
<tr>
<td>Svinjska mast</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Kokosovo olje</td>
<td>1,8</td>
<td>6,1</td>
</tr>
<tr>
<td>Palminso olje</td>
<td>-</td>
<td>0,1</td>
</tr>
<tr>
<td>Kakavovo maslo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bučno olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Koruzno olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sojino olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sončnično olje</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>Oljčno olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lanoeno olje</td>
<td>-</td>
<td>0,1</td>
</tr>
<tr>
<td>Repično olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ribje olje (losos)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avokadovo olje</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Olje grozdnih pečk</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

EPK = eikozapentaenojska kislina; DPK = dokozapentaenojska kislina; DHK = dokozaheksaenojska kislina; TMK = trans maščobne kisline

Kemijska reaktivnost ogljikovodikove verige maščobnih kislin je odvisna od stopnje njene nasičenosti (Boyer, 2005), torej od števila dvojnih vezi v verigi. Nasičene maščobne kisline nimajo dvojnih vezi v verigi, zato so na splošno nereaktivne. Vpeljava ene ali več dvojnih vezi v ogljikovodikovo verige maščobne kisline pa priskrbi aktivno mesto, ki je lahko podvržemo številnim nezaželenim (npr. oksidacija) in/ali industrijsko zaželenim reakcijam (npr. hidrogenacija) (DeMan, 2007).

Najpogostejša reakcija maščobnih kislin z dvojнимi vezmi je reakcija z atmosferskim kisikom (tj. avtooksidacija). V reakciji se tvorijo hidroperokside, ki sicer niso hlapne in so brez vonja, vendar zaradi nestabilnosti spontano ali ob prisotnosti katalizatorjev hitro razpadejo v hlapne ogljikovodike, aldehide in ketone. Hlapni aldehidi povzročajo spremembo vonja in okusa olja, kar se izrazi kot žarkost. Vmesni produkti (spojine z neparnim številom...)

15
elektronov, t. i. proši radikali) reagirajo s karotenoidi, kar povzroči bledenje barve olja. Reagirajo lahko tudi z vitamini (npr. tokoferoli oz. vitaminom E), ki posledično izgubijo antioksidativne lastnosti. Zaradi avtooksidacije nenasičenih maščobnih kislin olja torej izgubijo svojo biološko vrednost in stabilnost. Dejavniki, ki vplivajo na stopnjo avtooksidacije, so količina prisotnega kisika (višja kot je, hitreje poteče reakcija), stopnja nasičenosti maščobne kisline (višje kot je število nenasičenih (dvojnih) vezi, večja je občutljivost na avtooksidacijo), prisotnost antioksidantov (proces se upočasni), prisotnost prooksidantov (proces se pospeši), temperatura skladiščenja in izpostavljenost svetlobi (višja temperatura in daljša izpostavljenost svetlobi pospešita proces) (DeMan, 2007).

Pomembno je razumeti procese, ki vplivajo na stabilnost olj, ki se uporabljajo v proizvodnji živil, saj močno vplivajo v proizvodnji živil. Standardna metoda za merjenje oksidacijske stabilnosti jedilnih olj je test OSI oz. test z Rancimatom, s katerim dobimo indeks oksidativne stabilnosti. Pri tej metodi se skozi segreto olje (na 110 °C) spusti atmosferski kisik. Končna točka je dosežena, ko je količina produktov, ki so posledica oksidacije, maksimalna (List, 2016). Test zagotavlja dobre podatke o obstojnosti olj na trgovskih policah, žarkosti in oksidacijski stabilnosti olj pri sobni temperaturi (Martinčič, 2002).

1.3 PRIPOROČILA ZA VNOS MAŠČOB IN MAŠČOBNIH KISLIN

Priporočila za vnos hranil so veljavna za 98 % vseh zdravih odraslih ljudi, torej so postavljene mejne vrednosti precej robustne. Ob upoštevanju priporočenih količin dnevnega vnosa posameznih hranil je malo verjetno, da bi posameznik trpel za posledicami pomanjkanja. Tudi v primeru nižjega vnosa od priporočenega še ni mogoče sklepati, da bi nekega hranila primanjkovalo, ampak se samo povečuje verjetnost nezadostnega vnosa (Referenčne vrednosti ..., 2016).

Priporočili za vnos maščob in maščobnih kislin v prehrani odraslih (Referenčne vrednosti ..., 2004; FAO, 2010; EFSA (NDA), 2010)

<table>
<thead>
<tr>
<th>Maščobe/MK</th>
<th>Energijski vnos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skupne maščobe</td>
<td>30</td>
</tr>
<tr>
<td>NMK</td>
<td>< 10</td>
</tr>
<tr>
<td>ENMK</td>
<td>> 10</td>
</tr>
<tr>
<td>VNMK</td>
<td>7- (10^9)</td>
</tr>
<tr>
<td>ω-6 VNMK (linolna kislina)</td>
<td>2,5</td>
</tr>
<tr>
<td>ω-3 VNMK (α-linolenska kislina)</td>
<td>0,5</td>
</tr>
<tr>
<td>EPK + DHK</td>
<td>/</td>
</tr>
<tr>
<td>TMK</td>
<td>< 1</td>
</tr>
</tbody>
</table>

NMK = nasičene maščobne kisline; ENMK = enkrat nenasičene maščobne kisline; VNMK = večkrat nenasičene maščobne kisline; EPK = eikozapentaenojska kislina; DHK = dokozahexaenojska kislina; TMK = trans maščobne kisline

\(^{a}\)v primeru, da je NMK več kot 10 %; \(^{b}\)izračunan → skupne maščobe [% E] − NMK [% E] − VNMK [% E] − TMK [% E]

Priporočen energijski vnos maščob za osebe z lahkim in srednje težkim delom po Referenčnih vrednostih ... (2004), ki veljajo tudi za Slovenijo, naj ne bi presegal 30 %. Po priporočilih ostalih dveh organizacij se vnos giblje v razponu med 20 in 35 %, pri čemer so višji vnosi priporočeni za nosečnice, doječe matere in telesno zelo dejavne posameznike. Spodnja meja, s katero se zagotovi dovolj energije in esencialnih maščobnih kislin, mora pri nas znašati minimalno vsaj 15 % (Referenčne vrednosti ..., 2004).

Posamezne nasičene maščobne kisline imajo različen vpliv na koncentracijo holesterola v plazmi. Lavrinska, miristinska in palmitinska kislina povečujejo nivo LDL holesterola, medtem ko stearinska kislina nima takšnega vpliva (FAO, 2010). Če energijski vnos v obliki maščob pri odrasli osebi znaša do 30 % skupnega energijskega vnosa, naj bi bila od tega tretjina nasičenih maščobnih kislin z dolgimi verigami (Referenčne vrednosti ..., 2004).

Vnos enkrat nenasičenih maščobnih kislin naj bi bil višji od 10 % oz. se vnos izračuna tako, da od skupnega energijskega vnosa odštejemo skupni vnos nasičenih, večkrat nenasičenih in trans maščobnih kislin (FAO, 2010; Referenčne vrednosti ..., 2004). Teoretično je torej vnos enkrat nenasičenih maščobnih kislin največji in se gibalje med 18 % in 23 %, odvisno od vnosa ostalih maščobnih kislin.

Vnos večkrat nenasičenih maščobnih kislin se gibalje med 6 % in 11 %. Zgornja meja je priporočljiva v primeru, če vnos nasičenih maščobnih kislin presega 10 % skupnega energijskega vnosa, da se prepreči povišanje koncentracije holesterola v plazmi. Če je vnos večkrat nenasičenih maščobnih kislin višji od 11 % in vnos tokoferolov (Vitamin E deluje kot antioksidant tako v telesu kot tudi v različnih izdelkih) nizek, se poveča tveganje za
peroksidacijo maščob oz. nastanek prostih radikalov v organizmu. Pri vnosu esencialnih maščobnih kislin je pomembno razmerje med linolno kislino (ω-6) in α-linolensko kislino (ω-3), ki naj bi bilo med 5:1 do 10:1, pri čemer naj bi bil vnos linolne kisline 2,5 %, vnos α-linolenske kisline pa 0,5 % skupnega energijskega vnosa (referenčne vrednosti ..., 2004; FAO, 2010). Priporočljiv dnevni vnos ω-3 maščobnih kislin se lahko giblje med 0,5 in 2 % skupnega energijskega vnosa, dnevni vnos ω-6 maščobnih kislinah pa med 2 in 4 % skupnega energijskega vnosa (Referenčne vrednosti ..., 2004; FAO, 2010; EFSA (NDA), 2010). Priporočila za vnos dolgoverižnih večkrat nenasičenih ω-3 maščobnih kislin (EPK + DHK) za odrasle znaša 0,25 g/dan. Za doječe matere in nosečnice pa je minimalni vnos za optimalno zdravje ženske in razvoj zarodka višji, in sicer znaša 0,3 g/dan (od tega mora biti vsaj 0,2 g DHK) (FAO, 2010; NIJZ, 2016c).

Trans maščobne kisline naj bi bile v človekovi prehrani prisotne v čim manjših količinah in naj ne bi znašale več kot dva gram transmaščob na dan za posameznika, ki ima dnevne potrebe okoli 2000 kcal (NIJZ, 2016a).

1.3.1 **Doseganje priporočenih vnosov omega 3 maščobnih kislin**

Kot najprimernejša prehranska dopolnila iz ribjega olja avtorji prepoznavajo tista, ki vsebuje EPK in DHK v razmerju od 2:1 do 1:2, saj prepričljivih dokazov, da bi bila prehranska dopolnila sestavljena le iz ene od obeh ω-3 maščobnih kislin ustreznejša, ni (Harris, 2004). Kapsule ribjega olja se v količinah in razmerjih EPK in DHK razlikujejo, zato mora biti potrošnik zelo pozoren na količino oz. razmerje EPK in DHK, ki jo posamezna kapsula oz. priporočen dnevni odmerek vsebuje. Za vnos približno 1 g EPK in DHK je po oceni avtorjev dnevno potrebno vzeti od ene do štiri kapsule (Harris, 2004).

Pri uživanju ribjega olja iz njihovih jeter je potrebna dodatna pozornost potrošnika, da pri jemanju posameznega prehranskega dopolnila upošteva navodila proizvajalca, saj je potrebno poleg vnosa količin DHK in EPK upoštevati ševnos količin vitaminov A in D, ki ju tako olje vsebuje (Mason, 2007). V prekomernih količinah sta navedena vitamina toksična, zato ne smemo presegati najvišjih dovoljenih vnosov (EFSA, 2006). Pri oljih iz telesa rib teh
varnostnih omejitev ni (Webb, 2006), saj je vsebnost teh vitaminov v njih nizka (Mason, 2007).

Sicer pa Evropska agencija za varno hrano navaja višjo zgornjo mejo – 5 g/dan (EFSA (NDA), 2012), medtem ko je za ameriško Upravo za hrano in zdravila (FDA) zgornja meja varnega vnosa za EPK in DHK 3 g/dan (FAO, 2010).

1.3.1.1 Primer izračuna količine olja, ki pokrije dnevne potrebe po vnosu esencialnih maščobnih kislin

Podatkov o potrebnih količinah maščobnih kislin ni, zato smo v nadaljevanju navedli primer izračuna količine olja, ki pokrije dnevne potrebe po vnosu esencialnih maščobnih kislin.

Referenčne vrednosti ...(2016) navajajo, da je potrebno pokriti 0,5 % dnevnega energijskega vnosa z α-linolensko kislino. Pri izračunu potrebne količine določenega rastlinskega olja bomo predpostavili, da računamo za 25-50 letnega moškega, ki je zmerno telesno dejaven.

1. korak: Izračunamo koliko energije je potrebno na dan vnesti z α-linolensko kislino za moškega.

\[x = \frac{0,5}{100} \times 2700 \text{ kcal} = 13,5 \text{ kcal} \]

2. korak: Z 80 g maščob pri moških zagotovimo 2300 kcal (Referenčne vrednosti ..., 2016). Izračunamo lahko, koliko g α-linolenske kisline je potrebno zaužiti, da zagotovimo 13,5 kcal.

\[y = \frac{80g \times 13,5 \text{ kcal}}{2300 \text{ kcal}} = 0,47g \]

3. korak: Pri lanenem olju po podatkih iz Preglednica 11 α-linolenska kislina predstavlja 55 % vseh maščobnih kislin. Izračunamo lahko, koliko olja je potrebno zaužiti, da v telo vnesemo 0,47 g α-linolenske kisline.

\[z = \frac{0,47g}{0,55} = 0,85g \]
4. korak: Ena jedilna žlica olja ustreza masi 10 g (uveljavljena merska pretvorba npr. v kulinariki, ki jo med drugim uporablja tudi OPKP), kar pomeni, da že z desetino jedilne žlice lanenega olja zadostimo potrebam po vnosu α-linolenske kisline.

Po enakem postopku je izračunana tudi količina potrebne zaužite linolne kisline, kar prikazuje Preglednica 7.

Preglednica 7: Referenčne (Referenčne vrednosti ..., 2016) in izračunane vrednosti, s katerimi zadostimo potrebam po dnevnom vnosu esencialnih maščobnih kislin za 25-50 let starega zmerno telesno dejavnega moškega

<table>
<thead>
<tr>
<th>Referenčne vrednosti</th>
<th>Izračunane vrednosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energijski vnos, ki ga moramo pokriti z določeno esencialno maščobno kisline</td>
<td>Masa maščobne kisline, ki pokrije potreben energijski vnos</td>
</tr>
<tr>
<td>Priporočen dnevni energijski vnos</td>
<td>2700 kcal</td>
</tr>
<tr>
<td>Priporočeni dnevni vnos linolne kisline</td>
<td>2,5 (% energije)</td>
</tr>
<tr>
<td>Priporočeni dnevni vnos α-linolenske kisline</td>
<td>0,5 (% energije)</td>
</tr>
</tbody>
</table>
2 RIBJA OLJA IN OLJA IZ MORSKIH ORGANIZMOV

2.1 RIBE KOT VIR PRIDOBIVANJA OLJA

Kot surovine za pridelavo ribjega olja se lahko uporabljata telo ribe ali zgolj ribja jetra (Bandarra in sod., 2012). Olje iz telesa rib se skoraj izključno proizvaja iz majhnih, pelagičnih vrst rib (Bandarra in sod., 2012), torej iz rib, ki plavajo oziroma se zadržujejo v zgornjih plasteh morja (Pike in Jackson, 2010). Za te vrste rib velja, da imajo maščobe shranjene v podkožju, mišičnem tkivu in črevesju (Bandarra in sod., 2012). Mednje sodijo ribe, kot so sardon (angl. anchovy; *Engraulis encrasicolus*, družina Engraulidae), sardela (angl. sardine/pilchard; *Sardina pilchardus*, družina Clupeidae), peščenke (angl. sandeels; *Ammodytes spp.*, družina Ammodytidae), kapelin (angl. capelin; *Mallotus villosus*, družina Osmeridae), papalina (angl. sprat; *Sprattus sprattus*, družina Clupeidae), sled (angl. herring; *Clupea sprattus*, družina Clupeidae), šuri (angl. jack and horse mackerels; *Trachurus spp.*, družina Carangidae) (Bandarra in sod., 2012), norveški molič (angl. Norway pout; *Trisopterus esmarkii*, družina Gadidae), skuše (angl. mackerels; *Scomber spp.*, družina Scombridae) in menhadni (angl. menhaden; *Brevoortia spp.*, družina Clupeidae) (Allen, 1995). Sardone, šure, menhadne in sardele lovijo v morjih južno od ekvatorja ali v južnem delu severne poloble, medtem ko kapeline, slede, skuše, norveškega moliča, peščenke in papaline lovijo v severnem delu severne poloble (Allen, 1995).

Ribe, ki bivajo v bližini dna morja (pridnene ribe), shranjujejo maščobo v jetrih (Pike in Jackson, 2010). Za pridelavo olja iz jeter rib največkrat uporabijo jetra trske (angl. cod; *Gadus morhua*, družina Gadidae), lahko tudi jetra navadnega ali pacifiškega jezika (angl. halibut; *Hippoglossus hippoglossus in Hippoglossus stenolepis*, družina Pleuronectidae) in morskega psa (angl. shark; nadred Selachimorpha) (Mason, 2007). Vse zgoraj navedene vrste rib so divje, vrste kot so atlantski losos (angl. atlantic salmon; *Salmo salar*, družina Salmonidae), šarenka (angl. rainbow trout; *Oncorhynchus mykiss*, družina Salmonidae), rečna jegulja (angl. jegulj; *Coregonus clupea*), riba kot vir pridobivanja olja (Bandarra in sod., 2012). Olje iz telesa rib se skoraj izključno proizvaja iz majhnih, pelagičnih vrst rib (Bandarra in sod., 2012), torej iz rib, ki plavajo oziroma se zadržujejo v zgornjih plasteh morja (Pike in Jackson, 2010). Za te vrste rib velja, da imajo maščobe shranjene v podkožju, mišičnem tkivu in črevesju (Bandarra in sod., 2012). Mednje sodijo ribe, kot so sardon (angl. anchovy; *Engraulis encrasicolus*, družina Engraulidae), sardela (angl. sardine/pilchard; *Sardina pilchardus*, družina Clupeidae), peščenke (angl. sandeels; *Ammodytes spp.*, družina Ammodytidae), kapelin (angl. capelin; *Mallotus villosus*, družina Osmeridae), papalina (angl. sprat; *Sprattus sprattus*, družina Clupeidae), sled (angl. herring; *Clupea sprattus*, družina Clupeidae), šuri (angl. jack and horse mackerels; *Trachurus spp.*, družina Carangidae) (Bandarra in sod., 2012), norveški molič (angl. Norway pout; *Trisopterus esmarkii*, družina Gadidae), skuše (angl. mackerels; *Scomber spp.*, družina Scombridae) in menhadni (angl. menhaden; *Brevoortia spp.*, družina Clupeidae) (Allen, 1995). Sardone, šure, menhadne in sardele lovijo v morjih južno od ekvatorja ali v južnem delu severne poloble, medtem ko kapeline, slede, skuše, norveškega moliča, peščenke in papaline lovijo v severnem delu severne poloble (Allen, 1995).
river eel; *Anguilla anguilla*, družina Anguillidae) in som (angl. catfish; *Silurus glanis*, družina Siluridae) pa za namen pridelave ribjih olj tudi gojijo (Bimbo, 2013).

Tako divje ribe kot gojene ribe so dober vir dolgoveričnih večkrat nenasičenih ω-3 maščobnih kislin (predvsem EPK in DHK), vendar jih ribe same niso sposobne sintetizirati. Zato tako kot pri ljudeh, EPK in DHK tudi pri ribah veljata za esencialne maščobne kisline (Harris, 2004). V oceanih so primarni proizvajalci dolgoveričnih večkrat nenasičenih ω-3 maščobnih kislin enocelični fitoplanktonsni organizmi (večinoma alge), ki jih sprva zaužijijo zooplanktonsni raki. Te nato pojedo ribe ter tako pridobijo dolgoverične večkrat nenasičene ω-3 maščobne kisline (predvsem EPK in DHK) (Sargent, 1997), ki se vgradijo v njihove maščobe (Shahidi in Wanasundara, 1998).

državah (tudi v Evropski uniji) praktično prepovedana (Uredba (ES) št. 1007/2009). Olje iz tjulnjev je sicer bogat vir ω-3 maščobnih kislin in se v državah, kjer je to dovoljeno, prodaja v obliki kapsul (Bimbo, 2015).

Zaradi ugotovitve, da rible vsebujejo ω-3 maščobne kisline le zaradi vsebnosti le-teh v njihovi prehrani, se je zanimanje obrnilo tudi k mikroorganizmom, ki so glavni viri teh maščobnih kislin v morski prehranjevalni verigi (Harris, 2005). Mikroalge kot primarni proizvajalci ω-3 maščobnih kislin predstavljajo obetaven vir EPK in DHK (Adarme-Vega in sod., 2012), vendar široko uporabo olj iz mikroorganizmov kot prehranskih dopolnil trenutno omejujejo predvsem visoki stroški pridobivanja (Harris, 2005). Pričakuje se, da bo v prihodnje pridobivanje in uporaba olj iz mikroorganizmov narasla, saj predstavljalo sprejemljiv vir ω-3 maščobnih kislin tudi za vegetarjance (Finco in sod., 2016).

2.3 PRIDOBNIVANJE RIBJEGA OLJA TER POSEBNOSTI V PRIDOBNIVANJU OLJ IZ DRUGIH MORSKIH ORGANIZMOV

Surovine za pridobivanje ribjega olja, izvirajo iz različnih virov: iz rib, ujetih posebej z namenom, da iz njih pridobijo ribjo moko iz ribolovovom; ali iz stranskih proizvodov predelave rib (tako divjih kot gojenih) za prehrano ljudi, kot so drobovina in odrezki od filetiranja rib, ter odpadki nastali pri konzerviranju rib in pridobivanju iker. Iz zadnjih dveh kategorij se proizvede manjše količine olja v primerjavi s količino, proizvedeno iz celih rib, saj so vrste užitnih rib oziroma rib namenjenih prehrani običajno nemastne (Bimbo, 2015).

2.3.1 Postopki pridobivanja ribjega olja

Za pridobivanje ribjega olja se večinoma uporabljajo enaka načela, tehnike in oprema, kot pri proizvodnji drugih jedilnih maščob in olj (Bimbo, 2015). Postopki za proizvodnjo ribjega olja se med proizvajalci sicer lahko razlikujejo, vendar imajo podobne ključne korake. Ti vključujejo iztiskanje olja iz rib, rafiniranje oziroma prečiščenje olja ter njegovo obogatitev (Khoomrung in sod., 2014).

2.3.1.1 Iztiskanje olja iz ribjih surovin

Večino ribjega olja pridobijo kot stranski produkt proizvodnje ribje moke z eno od dveh glavnih metod - z mokrim iztiskavanjem (angl. wet reduction ali wet rendering) ali s suhim iztiskavanjem (angl. dry rendering) (Bandarra in sod., 2012). Poleg teh se lahko za predelavo

4 Rjav prah, pridobljen iz rib, običajno z visoko vsebnostjo beljakovin in znatno količino maščob ter mineralov (Barlow, 2003).
rib v ribjo moko in olje uporabljajo še številne druge metode, kot so hidroliza, proizvodnja silaže, ekstrakcija s topilom, ekstrakcija s superkritično tekočino (tj. uporaba superkritičnega ogljikovega dioksida kot topila za ekstrakcijo) in kislinsko-bazična obdelava (Bimbo, 2015).

2.3.1.1 Mokro iztiskavanje

2.3.1.1.2 Suho iztiskavanje

2.3.1.2 Rafiniranje

Rafiniranje oziroma prečiščenje surovega ribjega olja je nujno za odstranitev neželenega okusa, vonja in snovi (Merkle in sod., 2016), kot so trdni delci, proste maščobne kisline, fosfatidi, pigmenti, sledi kovin, produkti oksidacije, halogene spojine, žveplo (Allen, 1995) in obstojna organska onesnaževala, vendar je pri tem potrebno paziti, da se ohrani vsebnost ω-3 maščobnih kislin (Oterhal in Vogt, 2013). Rafiniranje olja se prične v rezervoarjih s surovim ribjim oljem in poteka z več postopki. Ti so degumiranje, nevtraliziranje, pranje, sušenje, beljenje, filtracija in deodorizacija. Rafinirano olje se nato ponovno ohладi in shranje v rezervoarjih namenjenih za hrambo jedilnega olja (Young, 1982). Olju je nato potrebno
dodati še antioksidante, ki so bili tekom postopkov rafiniranja iz surovega ribjega olja odstranjeni, s čimer upočasnimo in omejimo oksidacijo ter izboljšamo stabilnost končnega rafiniranega olja namenjenega potrošnji (Oterhal in Vogt, 2013).

2.3.1.3 Obogatitev

2.3.2 Pridobivanje olj iz posameznih ribjih delov in drugih morskih živalskih organizmov

Olje iz ribjih jeter ločijo s segrevanjem s paro, nato ga sperejo in centrifugirajo (Pigott in Tucker, 2003).

Za pridobivanje krilovega olja se trenutno uporabljajo postopki, kot so ekstrakcija celotnega krila s topili (uporabljajo se različna topila za odtsranjevanje vode, maščobe in okusa oz. arome), sušenje krila, ki mu sledi ekstrakcija s topilom, hidroliza krila in mokro iztiskavanje. Glede na to, kako kril obdelajo, lahko iz njega pridobimo tri različne produkte: krilovo olje, ki vsebuje maščobe v obliki trigliceridov in fosfolipidov; olje, ki vsebuje maščobe samo v obliki trigliceridov in olje z maščobami izključno v obliki fosfolipidov (Bimbo, 2015).
Pridobivanje olja iz drobovine lignjev temelji na etanolizi olja, ki ji sledi molekularna destilacija kratke poti, s čimer kot končni produkt dobimo olje obogateno z DHK in EPK (Salihu in sod., 2016)

2.3.3 Vpliv pogojev pridobivanja na sestavo in kakovost ribjih olj

Sestava in oksidativno stanje surovega ribjega olja sta odvisni od sestave in oksidativnega stanja surovin, iz katerih je ribje olje pridobljeno (EFSA (BIOHAZ), 2010). Najpomembnejši dejavnik pri proizvodnji kakovostnega surovega ribjega olja je zato stanje surovin pred pričetkom predelave (Young, 1982). Ribje olje se mora pridelovati iz svežih (Pike in Jackson, 2010), čim manj poškodovanih rib, ki so bile hranjene v ohlajenem okolju (Young, 1982). Na ta način se zmanjša kvarjenje rib in s tem učinek mikrobnega in encimskega delovanja na ribje tkivo (Young, 1982). Delovanje encimov bi povzročilo razgrajevanje maščob v ribah na njegove sestavne maščobne kisline, zaradi česar bi se povečala vsebnost prostih maščobnih kislin, ki mora biti v idealnih razmerah čim manjša (pod 2 %) (Pike in Jackson, 2010). Poleg tega se s preprečevanjem kvarjenja rib prepreči tudi povečanje vsebnosti dušikovih spojin in žvepla, ki nastajajo z razgradnjo beljakovin (Young, 1982) in so katalizatorski inhibitorji (Pigott in Tucker, 2003) ter prisotnost oksidativnih procesov (Pike in Jackson, 2010).

Kakovost surovega ribjega olja je poleg shranjevanja in ravnanja z ribami pred predelavo odvisna tudi od vrste in učinkovitosti obrata za predelavo rib oziroma pridobivanje olja ter shranjevanja in ravnanja s surovim ribjim oljem (Young, 1982). Tekom celotnega procesa proizvodnje surovega ribjega olja, kot tudi kasneje med rafiniranjem in koncentriranjem olja ter pripravo in shranjevanjem končnih izdelkov je treba paziti predvsem na preprečevanje oksidacije ribjih olj, ki poteka kadarkoli, kjer je prisoten kisik in lahko pripelje tudi do izgube večkrat nenasičenih maščobnih kislin (Oterhal in Vogt, 2013).

2.4 KEMIJSKA SESTAVA IN LASTNOSTI RIBJIH OLJ TER POSEBNOSTI V SESTAVI OLJ IZ DRUGIH MORSKIH ORGANIZMOV

Vsaka vrsta rib vsebuje olje (2-10 % telesne teže), vendar se količina in sestava olja razlikuje predvsem glede na vrsto rib in druge dejavnike kot so temperatura morske vode, letni čas, geografska lega ulova in prehrana rib (Allen, 1995). Maščobe, ki se pojavljajo v ribjih oljih, so
večinoma trigliceridi (Pigott in Tucker, 2003). Ti predstavljajo 90 % sestave olja. Približno 8 % olja predstavljajo mono- in digleciridi ter fosfolipidi (Bandarra in sod., 2012). Negliceridne snovi so prisotne v manjših količinah; običajno ne predstavljajo več kot 2 % surovega ribjega olja, vendar se njihov delež pod določenimi pogoji (odvisno od sezone in prehrane) lahko poveča na 8 % ali 9 % (Allen, 1995).

2.4.1 Maščobne kisline

Molekule trigliceridov, ki so prisotne v naravnem ribjem olju običajno vsebujejo eno dolgoverično ω-3 maščobno kislinino ter dve kratko ali srednje verižni maščobni kislini vezani na ogrodje glicerola (Schuchardt in Hahn, 2013). Kljub temu, da obstajajo razlike v sestavi, ki so posledica različnih vrst rib in različnih okoljskih dejavnikov, pri vseh ribjih oljih najdemo določene podobnosti v sestavi maščobnih kislin, v katerih se pomembno razlikujejo od rastlinskih olj in masti ter masti kopenskih živali. V primerjavi z rastlinskimi maščobami in maščobami kopenskih živali imajo ribja olja:

• širši razpon dolžin verig maščobnih kislin (12 do 24 ogljikovih atomov),
• višje stopnje nenasičenosti maščobnih kislin (do 6 dvojnih vezi) in
• nižjo raven maščobnih kislin z lihim številom ogljikovih atomov in razvejenimi verigami (Allen, 1995) (do 5 % (Pigott in Tucker, 2003)).

Preglednica 8: Vsebnost dolgoverižnih večkrat nenasičenih maščobnih kislin v različnih jedilnih oljih (g/100 g maščobe) (Ivanova in sod., 2016)

<table>
<thead>
<tr>
<th>DVVNMK</th>
<th>Ribje olje</th>
<th>Laneno olje</th>
<th>Orehovo olje</th>
<th>Bučno olje</th>
<th>Oljčno olje</th>
<th>Sončnično olje</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω-6 maščobne kisline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 20:2</td>
<td>0,72</td>
<td>0,01</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 20:3</td>
<td>0,18</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 20:4</td>
<td>0,52</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 22:2</td>
<td>0,07</td>
<td>0,02</td>
<td>0,02</td>
<td>0,06</td>
<td>0,00</td>
<td>0,04</td>
</tr>
<tr>
<td>ω-3 maščobne kisline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 20:3</td>
<td>0,31</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 20:5 (EPK)</td>
<td>8,69</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 22:5 (DPK)</td>
<td>1,36</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C 22:6 (DHK)</td>
<td>6,09</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

DHK = dokozaheksaenojska kislina; DPK = dokozapentaenojska kislina; DVVNMK = dolgoverižne večkrat neanasičene maščobne kisline; EPK: eikozapentaenojska kislina

Od vseh večkrat nenasičenih maščobnih kislin v ribjih oljih je več kot 90 % ω-3 maščobnih kislin, manjši delež predstavljajo ω-6 maščobne kisline. Nasprotno so v rastlinskih oljih skoraj vse večkrat nenasičene maščobne kisline vrste ω-6, pri čemer je ω-3 večkrat nenasičenih maščobnih kislin manj kot 5 % (Pigott in Tucker, 2003). Najpomembnejši maščobni kislini z dolgimi verigami, ki sta edinstveni za ribja olja, sta visoko nenasičena EPK in DHK (Allen, 1995), nekaj je tudi DPK (Preglednica 8) (Pike in Jackson, 2010). Naravno ribje olje vsebuje približno 18 % EPK in 12 % DHK (Schuchardt in Hahn, 2013), vendar se njuna koncentracija med vrstami rib razlikuje (Pigott in Tucker, 2003). Medtem ko se pri večini vrst rib skupna koncentracija obeh kislin v ribjem olju giblje med 17,5 % in 33 % vseh maščobnih kislin, pri nekaterih vrstah rib predstavljata tudi do 50-odstotni delež (Pigott in Tucker, 2003). Na splošno velja, da imajo višjo koncentracijo EPK in DHK bolj mastne ribe (Harris, 2004). Količino in delež posameznih dolgoverižnih ω-3 maščobnih kislin se lahko spreminja s transesterifikacijo, s čimer je možno ustvariti ribje olje koncentrirano z EPK in DHK (glej poglavje 2.3.1.3) (Schuchardt in Hahn, 2013).

2.4.1.1 Vpliv vrste rib in drugih dejavnikov na vsebnost maščobnih kislin

Vrsta rib vpliva na vsebnost ω-3 maščobnih kislin v ribjem olju. Pelagične ribe, ki običajno hranijo maščobe v telesu namesto v jetrih, imajo visoko vsebnost dolgoverižnih ω-3 maščobnih kislin. Te lahko predstavljajo do 35 % skupne maščobe v ribah. Večja nenasičenost ribjega olja (tj. višja vsebnost dolgoverižnih ω-3 maščobnih kislin) obenem pomeni tudi višjo vsebnost nasičenih maščobnih kislin, kot sta miristinska in palmitinska kislina. Pridnene ribe (npr. trska, morski list), ki shranjujejo maščobe v jetrih, imajo nižjo vsebnost ω-3 maščobnih kislin (15 % do 20 %) (Pike in Jackson, 2010). Prisotnost visoko nenasičenih ω-3 maščobnih kislin odraža tudi sestavo prehrane rib. Profil maščobnih kislin pri gojenih ribah je tako odvisen od sestave maščobnih kislin v njihovi krmi.
Ribje olje z visoko ravnjo EPK in DHK se zato uporabljaja tudi za krmo gojenih sladkovodnih in morskih vrst. S tem ne zagotavljajo le bistvenih ω-3 maščobnih kislin za zdravje rib, temveč tudi boljšo kakovost rib, ki so po hranljivosti podobne divjim vrstam. Od drugih okoljskih dejavnikov je pomembna zlasti temperature vode, pri čemer velja, da ribe iz hladnejših voda vsebujejo večje količine visoko nenasičenih maščobnih kislin (Pigott in Tucker, 2003).

2.4.2 Negliceridne snovi v ribjih oljih

2.4.3 Lastnosti ribjih olj

2.4.4 Sestava olj iz drugih morskih organizmov

Tako kot ribje olje sta tudi olje iz krila in drobovine lignjev bogata z večkrat nenasičenimi maščobnimi kislinami, zlasti ω-3 (Bimbo, 2015; Kang in sod., 2005). Skupna sestava maščobnih kislin v krilovem olju je podobna kot pri ribjem. Od ω-3 večkrat nenasičenih maščobnih kislin sta v večjih količinah prav tako kot v ribjem olju prisotni predvsem EPK in DHK, vendar je vsebnost EPK v krilovem olju višja, kot v ribjem (Preglednica 8 in Preglednica 9) (Tou in sod., 2007). Posledično se ribje in krilovo olje razlikujeta v razmerju med EPK in DHK; v ribjem olju je to razmerje pogosto približno 1:1, medtem ko je v krilovem olju to razmerje 2:1 (Ulven in Holven, 2015). Poleg tega je v olju krila večina (več kot 80 %) EPK in DHK vezane na fosfolipide, medtem ko sta ti dve maščobni kislini v ribjem olju navadno vključeni v trigliceride (Burri in Johnsen, 2015). Krilovo je bogato tudi s holinom, ki je pogojno esencialno hranilo. Človeško telo sicer lahko sintetizira holin, vendar ta količina ne zadošča za izpolnjevanje vseh telesnih potreb, zaradi česar je preostanek treba pridobiti s hrano (Burri in Johnsen, 2015). Za razliko od ribjega olja krilovo olje vsebuje tudi močan antioksidant (astaksantin), ki pomaga preprečiti oksidacijo dolgoverižnih večkrat nenasičenih maščobnih kislin (Bunea in sod., 2004). Poleg tega lahko kri vsebuje večjo količino vitamina A in E, kot nekatere ribe (npr. postrvi in losos), vendar ima tudi višjo vsebnost holesterola (Tou in sod., 2007).

Preglednica 9: Sestava maščobnih kislin v krilovem olju in olju iz lignjev (% vseh maščobnih kislin) (Bimbo, 2013; Burri in Johnsen, 2015)

<table>
<thead>
<tr>
<th>Nasičene MK</th>
<th>Enkrat nenasičene MK</th>
<th>ω-3 MK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krilovo olje</td>
<td>24-35 (23 g/100g olja)</td>
<td>19-28 (15 g/100g olja)</td>
</tr>
<tr>
<td>Olje iz lignjev</td>
<td>22-41</td>
<td>8-35</td>
</tr>
</tbody>
</table>

DHK = dokozahexaenojska kislina; DPK = dokozapentaenojska kislina; EPK = eikozapentaenojska kislina; MK = maščobne kisline

V olju pridobljenem iz različnih vrst lignjev ω-3 večkrat nenasičene maščobne kisline predstavljajo od 27 % do 52 % vseh maščobnih kislin (Bimbo, 2015). Med njimi prevladujeta EPK in DHK (Preglednica 9), ki sta prisotni kot del trigliceridov ali fosfolipidov (Galliani in Brucka, 2016). V nasprotju s krilovim oljem, olje iz lignjev vsebuje več DHK kot EPK, zaradi česar deluje kot idealen vir za izolacijo te maščobne kisline, vendar ima olje iz drobovine lignjev tudi visoko vsebnost holesterola, zato je njegova uporaba omejena (Liang in Hwang, 2000).
Edinstvenost rib v prehrani ljudi ni v njihovih visokokakovostnih beljakovinah, za katere obstaja veliko drugih alternativ, pač pa v njihovi visoké vsebnosti ω-3 večkrat nenasičenih maščobnih kislin (EPK, DHK in DPK) (Preglednica 8) (Sargent in Tacon, 1999), saj je ribje olje skoraj edini prehransko pomemben vir, ki jih vsebuje (Pike in Jackson, 2010; Pigott in Tucker, 2003). Od kmetijskih živali iz proste reje in/ali tistih, ki so hranjene s svežo krmo, lahko pridobimo mleko in jajca, ki vsebujejo sledi teh maščobnih kislin, ker pa se je z napredovanjem živinoreje uporaba sveže krme zmanjšala, je posledično vsebnost dolgoveržnih ω-3 maščobnih kislin v proizvodi kopenskih žival skoraj nična. Poleg tega se je zaradi povečanja uporabe rastlinskih olj povečala vsebnost ω-6 maščobnih kislin v prehrani, s tem pa tudi razmerje med ω-6 in ω-3 maščobnimi kislinami (na približno 15:1). V optimalni prehrani naj bi bilo razmerje med ω-6 in ω-3 maščobnimi kislinami med 3:1 in 5:1. Uživanje ribjega olja, bodisi z ribi ali prehranskimi dopolnili, lahko to ravnotežje obnovita in zgoroža količine dolgoveržnih ω-3 maščobnih kislin (Pike in Jackson, 2010) v prehrani. Olja iz ribjih jeter imajo poleg navedenega še dodano vrednost, saj so glavni naravni viri vitaminov A in D (Pigott in Tucker, 2003).
mesečno. Poleg tega so podatki pokazali, da 12,1 % odraslih prebivalcev Slovenije nikoli ne uživa rib (Gabrijelčič Blenkuš in sod., 2009). Na osnovi Ankete o porabi v gospodinjstvu Statističnega urada RS je bilo ugotovljeno, da prebivalci Slovenije povprečno zaužijemo zgolj 1,46 kg svežih ali zamrznjenih rib na leto (oziroma 4 kg skupaj z morskimi sadeži in drugimi ribjimi izdelki), kar predstavlja 4 g na dan na prebivalca (NIJZ, 2016b).

Z industrijsko revolucijo se je delež nasičenih in ω-6 maščobnih kislin v prehrani močno povečal, delež ω-3 maščobnih kislin pa se je zmanjšal (Salobir, 2001). Tega sicer ne moremo na splošno trditi za vse države, saj je vnos dolgoverižnih večkrat nenasičenih ω-3 maščobnih kislin neposredno odvisen od uživanja rib.

EFSA (NDA) (2012) po zbranih podatkih ugotavlja, da je povprečen dnevni vnos EPK in DHK (najpomembnejši dolgoverižni večkrat nenasičeni ω-3 maščobni kisline) pri odraslih iz hrane nižji od 1.200 mg/dan (npr.: Nemčija 127 mg/dan (ž) oz. 295 mg/dan (m); Nizozemska 285 mg/dan (ž); Beljija 1.115 mg/dan (ž)), v primeru dopolnjevanja prehrane s prehranskimi dopolnili pa nižji od 1.300 mg/dan (npr.: Irska 1.275 mg/dan). V državah, kjer je uživanje rib visoko, pa je povprečen dnevni vnos EPK in DHK pri odraslih iz hrane nižji od 2.700 mg/dan (npr. Francija). Za Slovenijo zaenkrat podatkov o povprečnem dnevnem vnosu EPK in DHK še ni, vendar glede na to, da smo glede uživanja rib na samem dnu med evropskimi državami, lahko sklepamo, da je tudi vnos EPK in DHK pod priporočili (Westhoek in sod., 2011).

2.6 PREHRANSKA DOPOLNILA Z RIBJIM OLJEM OZIROMA MAŠČOBNIMI KISLINAMI

Vir α-linolenske kisline (18:3) v prehranskih dopolnilih na severnoameriškem trgu je po navedbah avtorjev laneno olje in olje chia semen, vir EPK in DHK pa ribje olje, krilovo olje in lignjevo olje (Vannice in Rasmussen, 2014).

Prehranska dopolnila z EPK in DHK za vegetarijance na severnoameriškem trgu so pripravljena iz alg oz. jih izdelujejo z genskim inženirstvom (še v fazi razvoja) (Vannice in Rasmussen, 2014). Prehranska dopolnila s koncentriranimi ω-3 maščobnimi kislinami v obliki metil ali etil estra so na severnoameriškem trgu običajno dražja, a bolj koncentrirana, kar pomeni, da je za dosego ciljnih vnosov EPK in DHK dnevno potrebno zaužiti manj kapsul (Harris, 2004). Po navedbah avtorjev prehranska dopolnila zagotavljajo vse od 100 do 1.500 mg skupne količine EPK in DHK na odmerek (Mason, 2007), kar predstavlja 40-600 % priporočenega dnevnega vnosu teh dveh maščobnih kislin za odrasle (EFSA (NDA), 2010). Obstajajo tudi dopolnila, ki vsebujejo večinoma le EPK ali večinoma le DHK (EFSA (NDA), 2012).
Dopolnila z γ-linolensko kisilino, ki je vir ω-6 maščobnih kislin, na severnoameriškem trgu pa izvirajo iz boraginega in svetlinovega olja (Vannice in Rasmussen, 2014).

Kljub temu da uživanje prehranskih dopolnil z enkrat nenasičenimi maščobnimi kislini ni običajna praksa med prebivalci oz. ne temelji na znanstvenih dokazih, se na severnoameriškem trgu vseeno tržijo. Oleinska kisilina iz olivnega olja se v prehranskih dopolnilih nahaja samostojno, lahko pa tudi v kombinaciji z ω-3 in ω-6 maščobnimi kislinami. Kot prehransko dopolnilo se v ZDA in Kanadi trži tudi palmitooleinska kisilina kot ω-7 maščobna kisilina, ki je na voljo kot izdelek s trditvijo o preprečevanju ali zmanjševanju bolezni srca (Vannice in Rasmussen, 2014).

Nasičene maščobne kisline se v obliki prehranskih dopolnil na severnoameriškem trgu načeloma ne tržijo. Izjema so olja z srednjeverižnimi maščobnimi kislinami (t. i. MCT olja), ki vsebuje maščobne kisline z 8 in 10 C atomi. Nekatera tovrstna dopolnila so pripravljena iz kokosovega olja, ki vsebujejo 58,7 % srednjeverižnih maščobnih kislin (od 6 do 12 C atomov) in se zaradi tega tržijo kot olje z ugodnim vplivom na zdravje. Izpostaviti je potrebno, da se MCT olja uporabljajo za prehransko terapijo pri bolnikih, ki nimajo sposobnosti za pravilno prebavo maščob z dolgoverižnimi maščobnimi kislinami. Ta dopolnila pogosto izvira iz kokosovega ali palminega olja in lahko vsebujejo predvsem maščobne kisline z 12 C atomi, namesto z 8 ali 10 C atomi. Posamezniki iz ZDA oz. Kanade, ki uživajo prehranska dopolnila z MCT imajo drugačne potrebe v primerjavi z zdravimi posamezniki. V primeru uživanja tovrstnih prehranskih dopolnil moramo biti previdni, saj vpliv posameznih srednjeverižnih maščobnih kislin na zdravje še ni popolnoma jasno. Problem pa lahko nastane, ko prehranska dopolnila ne deklarirajo natančno, katero srednjeverižno maščobno kisilino vsebujejo (Vannice in Rasmussen, 2014).

Prehranska dopolnila v tekoči ali praškasti obliki sicer lahko vsebujejo trans maščobne kisline, vendar v primeru, da je vsebnost višja od 0,5 g/odmerek, mora biti le-ta v ZDA in Kanadi označen na deklaraciji. Zaradi negativnih vplivov trans maščobnih kislin na zdravje prehranska dopolnila, ki bi vsebovala trans maščobne kisline, kot samostojno hranilo, ne obstajajo (Vannice in Rasmussen, 2014).

Izdelki iz olj rib in drugih morskih organizmov so v zahodnih državah (ZDA, Kanada, Evropa) na voljo brez recepta (Shahidi in Wanasundara, 1998)\(^5\). Najpogostejša oblika prehranskih dopolnil z ribjim oljem na ameriškem trgu so želatinaste kapsule ali ustekleničene tekočine (Ritter in sod., 2013, Vinter, 1995), v katerih je ribje olje lahko koncentrirano z namenom povečanja vsebnosti ω-3 maščobnih kislin (Vinter, 1995). Na voljo so tudi žvečilni gumiji in

\(^5\) O potrebnosti in izbiri izdelkov, ki so na voljo brez recepta, se odloča praviloma potrošnik sam, zarazliko od izdelkov, ki jih mora predpisati zdravnik in so na voljo na nadzorovanih izdajnih mestih.

2.6.1 Glavne sestavine

Ker ribe hranijo vitamine A in D v jetrih, je olje iz ribjih jeter zelo bogato tudi z njimi in se ga kot dopolnilni vir teh vitaminov tudi jemlje, vendar je vsebnost dolgoverižnih ω-3 večkrat nenasičenih maščobnih kislin vseeno prevladujoči razlog za njihovo uživanje (Webb, 2006). V 10 ml olja iz jeter trske (tekoča oblika) najdemo od 750 do 1200 μg vitamina A ter od 2,5 do 10 μg vitamina D (Mason, 2007). To predstavlja 93,8–150 % priporočenega dnevnega vnosna vitamina A pri odraslih ženskah in 75–120 % pri odraslih moških ter 12,5–50 % priporočenega dnevnega vnosna vitamina D pri odraslih (NIJZ, 2016c). Koncentracija vitaminov A in D je v olju v kapsulah običajno višja, kot v ustrezeni olju. Tako ribje olje iz teles, kot tisto iz jeter rib, naravno vsebuje tudi vitamin E, ki se ga v prehranska dopolnila tudi še dodaja za zmanjšanje stopnje oksidacije olja (Webb, 2006).

2.6.2 Kakovost

Ne glede na vrsto rib, iz katere je olje v prehranskem dopolnilu narejeno, je pomembno, da je količina EPK in DHK v izdelku točna, še posebej, če se ta uporablja pri zdravljenju določenega stanja oziroma bolezni (Ritter in sod., 2013). Za razliko od zdravil, kjer se lahko potrošniki in zdravniki zanašajo na natančne in dosledne odmerke, je natančnost deklaracij na prehranskih dopolnilih, kot navajajo avtorji, pogosto manjša (Albert in sod., 2016), saj ugotavljajo, da niso nadzirane (Harris, 2004). Kar je razumljivo, saj so v Evropski uniji prehranska dopolnila regulirana z živilsko zakonodajo in niso namenjena zdravljenju (Direktiva 2002/46/ES Evropskega parlamenta in Sveta). V številnih raziskavah so ugotovili,
da ima mnogo prehranskih dopolnil iz ribjih olj in olj iz drugih morskih organizmov, ki so dostopni v maloprodaji, nižjo vsebnost ω-3 večkrat nenasičenih maščobnih kislin, kot je označeno na deklaraciji (Albert in sod., 2016). Vzrok so lahko številni zunanjii dejavniki (npr. embalažni material, sestavine v olju, arome, pogoji shranjevanja), ki vplivajo na lastnosti olja v kapsulah (EFSA (BIOHAZ), 2010).

2.6.3 Prehranska dopolnila z ω-3 maščobnimi kislinami na slovenskem trgu

V kategoriji Maščobne kisline⁶ baze P3 Professional⁷ je julija 2018 kar 284 izdelkov. Kot je razvidno iz Grafičnega prikaza št. 1 v tej kategoriji prevladujejo enokomponentni izdelki (vsebujejo samo eno glavno sestavino), večkomponentnih⁸ (več različnih sestavin iste P3 kategorije) je le za vzorec, veliko multikomponentnih (izdelek vsebuje različne glavne sestavine iz več P3 katerij) pa ima ribjemu olju oz. drugi tovrstni sestavini dodan le vitamin E.

⁶ V P3 kategorijo Maščobne kisline so uvrščeni izdelki, ki deklarirano vsebujejo kot glavno sestavino katerokoli ribje olje ali olje njihovih delov (npr. jeter), krilovo olje, DHK ali EPK, ali ω-3 maščobnimi kislinami ali CLA (kratica iz angleškega poimenovanja Conjugated Linoleic Acid, to je konjugirana linolna kislina) oz. druge maščobne kisline v znani količini.
⁷ Baza kategorizira izdelke glede na glavne sestavine, podatki o izdelkih pa so strukturirani, tako da omogočajo analizo oz. primerjavo, ki je delno predstavljena za kategorijo Maščobne kisline v nadaljevanju.
⁸ Število večkomponentnih izdelkov z različnimi maščobnimi kislinami, ki jih lahko zaznamo v bazi P3 Professional, je odvisno od kakovosti navedb proizvajalcev oz. lokalnih dobaviteljev, ki pripravljajo prevode.
Grafični prikaz 1: Delež enokomponentnih, večkomponentnih in multikomponentnih prehranskih dopolnil v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.

Proizvajalci prehranskih dopolnil iz te kategorije prihajajo iz različnih držav (glej Grafični prikaz št. 2), pri čemer pogosto ne navajajo dejansko uporabljene surovine za glavno sestavino, npr. ribjega olja, kaj šele njenega izvora. Ker več kot polovica izdelkov poimensko ne navaja niti proizvajalca izdelka, ne moremo govoriti o prevladujočem geografskem poreklu teh izdelkov.

Pri tehnoloških oblikah bi, poleg mehkih kapsul, ki so primerna tehnološka oblika za oljnate tekočine, pričakovali še tekoče oblike čistih olj ali njihovih mešanic oziroma emulzije ter
morebiti suspenzije. A kot je videti v Grafičnem prikazu št. 3 so poimenovanja tehnoloških oblik ohlapna, saj je pogosto v uporabi kar izraz *kapsula oz. olje*, čeprav gre verjetno za mehko kapsulo in pri tekočih oblikah za vsaj oljno raztopino oz. emulzijo. Trdne tehnološke oblike pa nakazujejo minimalno količino uporabljene oljne faze in s tem sestavine, s katero so se ti izdelki uvrstili v P3 kategorijo Maščobne kisline.

Grafični prikaz 3: Delež različnih tehnoloških oblik prehranskih dopolnil v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.

![Grafični prikaz](image)

Priporočeno jemanje je zelo raznoliko ter pogosto podano v razponu. Tako je za kar 182 izdelkov z ω-3 maščobnimi kislinami oz. ribjim oljem v obliki kapsul priporočena uporaba enkrat dnevno, v 40% od teh eno kapsulo na dan, v primeru 15% izdelkov, ki se jemljejo enkrat dnevno, 2 kapsuli, v 11% teh izdelkov 3 kapsule na dan, vendar v 15% izdelkov 1 do 2 kapsuli dnevno, v 7% izdelkov eno do tri kapsule in tako naprej do razpona 4 do 6 enot kapsul na dan.

Poleg tega pa je za dodatnih 27 izdelkov z ω-3 maščobnimi kislinami oz. ribjim oljem v obliki kapsul priporočeno jemanje 2-krat dnevno, za 4 tovrstne izdelke 2 do 3-krat dnevno, za 22 izdelkov 3-krat dnevno in za enega celo 4-krat dnevno. Pri tem variira priporočena število enot tehnološke oblike, to je kapsule, od izdelka do izdelka. Podobno raznolika je priporočena uporaba tudi drugih tehnoloških oblik v kategoriji *Maščobne kisline*. Različna dozirna shema očitno onemogoča neposredno primerljivost cen pakiranj različnih izdelkov. V bazi P3 Professional je zato priročen za vsak izdelek preračunan podatek, koliko pakiranj je
potrebno za en mesec redne uporabe, ki ga uporabljajo tudi Inštitut za raziskave in razvoj kakovosti za vsakoletno analizo cen prehranskih dopolnil na slovenskem trgu⁹.

Tako za leto 2017 opazimo zelo širok razpon cen izdelkov v Grafičnem prikazu št. 4, in razpon cen izdelkov glede na mesečno porabo v skladu z navedeno dozirno shemo v Grafičnem prikazu št. 5.

Grafični prikaz 4: Povprečna, najnižja in najvišja maloprodajna cena prehranskih dopolnil v kategoriji Maščobne kisline po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.

Viri ω-3 maščobnih kislin v različnih izdelkih so prikazani z deleži izdelkov, za katere so navedeni, v Grafičnem prikazu št. 6. Kot vir se na našem trgu že pojavljajo mikroalge, a še vedno je prevladujoča navedba vira zelo splošna, to je ribje olje, pri čemer tretjina izdelkov na trgu ne navaja vira oz. uporabljeni sestavine v nobeni obliki.

⁹ Poročilo z rezultati analize je plačljivo, Inštitut pa je dovolil objavo delnih podatkov za leto 2017 v nadaljevanju.
Grafični prikaz 5: Delež prehranskih dopolnil v kategoriji Maščobne kisline glede na vir \(\omega-3\) maščobnih kislin po podatkih baze P3 Professional za julij 2018.

Le 146 izdelkov z \(\omega-3\) maščobnimi kislinami ima navedbo tako o vsebnosti EPK in DHK, sicer pa so navedeni le podatki o vsebnosti omega 3 kot je razvidno iz Grafičnega prikaza št 6.

Grafični prikaz 6: Število prehranskih dopolnil z deklarirano vsebnostjo EPK, DHK in/ali \(\omega-3\) maščobnimi kislinami, rangiranimi v skupine vsebnosti le-teh v mg, v kategoriji Maščobne kisline po podatkih baze P3 Professional za julij 2018.
Iz analiziranih podatkov je razvidno, da so na slovenskem trgu v letošnjem letu najpogostejši izdelki z deklarirano vsebnostjo 180 mg EPK in 120 mg DHK v eni kapsuli (1000 mg ribjega olja) in ob priporočenem jemanju ene kapsule na dan.

10 % izdelkov v kategoriji Maščobne kisline ima naveden podatek o količini vsebovanega vitamina A. Med izdelki, ki vsebuje olje jeter trske ali polenovke pa jih 73% navaja količino vsebovanega vitamina A.

Vsebnosti vitamina A v teh izdelkih so v širokem razponu, in sicer se v 1 kapsuli nahaja med 200 in 800 mcg vitamina A oz. v tekočih oblikah v 1 ml med 50 in 120 mcg vitamina A.

Hranjenje v hladilniku ali na hladnejšem mestu navajala 10 % izdelkov v kategoriji Maščobne kisline.

Navedbe oksidativnega stanja nismo našli na nobenem izdelku.

Iz predstavljenih podatkov je razvidno, da je kakovost deklaracij tovrstnih izdelkov na slovenskem trgu zelo raznolika, kar otežuje standardizacijo podatkov in njihovo primerjavo. Pri tem pa so informacije o ponudbi na tužih trgih iz zbrane literature veliko ohlapnejše in brez predstavljene metodološke podlage za navedbe avtorjev, tako da je tudi primerjava ponudbe med različnimi trgi lahko le zelo groba ocena.

Že navedba sestavin izdelka na deklaracijah za večino proizvajalcev oz. distributerjev predstavlja težavo, saj analizirani podatki kažejo, da pogosto ne ločijo med formulacijo oz. dejansko uporabljenimi surovinami in prehransko sestavo oz. prehranskim profilom uporabljenih surovin. Tako npr. deklaracije teh prehranskih dopolnil pogosto kot sestavo prikazujo količine posameznih mašČobnih kislin, npr. EPK, dejansko pa je v formulaciji uporabljeno ribje olje in ne le posamezne izolirane maščobne kisline. Zaradi vsebnosti drugih
hranil, kot je npr. vitamin A, je smiselno natančneje opredeliti, za katero ribje olje gre, npr. jetra polenovke, prav tako pa tudi, ali je ta osnovna surovina v proizvodnji dodatno obogatena oz. koncentrirana s katerokoli sestavino. Pri čemer o obogatitvi govorimo takrat, ko se dodaja neka sestavina, ki je v osnovni surovini sploh ni. Medtem ko o koncentriranju govorimo takrat, ko v osnovni surovini neko že prisotno sestavino z nekim postopkom koncentriramo.

Pri obravnavi kakovosti prehranskih dopolnil iz kategorije Maščobne kisline, je potrebno izpostaviti še podatke o vplivu le-te na maloprodajne cene. Kot kaže Grafični prikaz št. 7, je razvidno, da so izdelki s certifikatom kakovosti proizvodnje v tej kategoriji lahko cenejši kot tisti brez zadevinih certifikatov. Kar kaže na to, da kakovost teh izdelkov na trgu ni ustrezno vrednotena oz. predstavljena potrošnikom.

Grafični prikaz 7: Primerjava povprečne, najnižje in najvišje maloprodajne cene enokomponentnih prehranskih dopolnil v kategoriji Maščobne kisline glede na to, ali imajo certifikat kakovosti proizvodnje ali ne, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.

Za kakovostnejše deklaracije prehranskih dopolnil v tej kategoriji je potrebna tudi standardizacija poimenovanj tehnoloških oblik in prevodov sestavin, kar bi prineslo na trg večjo transparentnost in omogočilo realno primerljivost izdelkov. Tako je pomembno, ali gre za mehko ali navadno kapsulo, saj iz tega sklepamo, za kakšno vsebino gre. Prav tako laični, pogosto dobesedni prevodi sestav, zamegljujejo pomen pomemdnosti njihovega vnosa.
3 Alge kot vir dolgoveržnih večkrat nenasičenih maščobnih kislin

Glavni vir dolgoveržnih večkrat nenasičenih ω-3 maščobnih kislin (EPK in DHK) v prehrani ljudi so trenutno morske mastne ribe (npr. losos in skuša) in ribja olja. Vendar pa se zaradi prisotnosti kemijskih onesnaževal (takšni so npr. PCB-ji in živo srebro), neprijetnega vonja in neprimernosti za vegetarijance ter vegane na tržišču pojavljajo tudi alternativni viri EPK in DHK. To so bakterije, plesni, gensko spremenjene rastline (npr.: soja, oljna repica), v ospredje pa prihajajo predvsem alge (Adarme-Vega in sod., 2012).

Maščobe pri nekaterih morskih mikroalgah10 predstavljajo 30 do 70 % suhe mase. Akumulacija maščobnih kislin je tesno povezana z fazo rasti alg in njihove funkcije kot vir energije v primeru neugodnih pogojev. Mikroalge iz rodov Phaeodactylum, Nannochloropsis, Thraustochytrium in Schizochytrium tvorijo visoke koncentracije EPK in/ali DHK. Phaeodactylum tricornutum in Nannochloropsis sp. tvorita do 39 % EPK od skupnih maščobnih kislin, medtem ko Thraustochytrium in Schizochytrium limacinum tvorita med 30 in 40 % DHK od skupnih maščobnih kislin, ko rasteta heterotrofn (Adarme-Vega in sod., 2012).

Iz biomase alg, gojenih v posodah za fermentacijo, se lahko pridobi olje, bogato z EPK in DHK. Proizvodnja dolgoveržnih večkrat nenasičenih maščobnih kislin v procesu fermentacije alg je tehnološko zahtevan proces, saj je fermentacija počasna, ekstrakcija pa zapletena, saj so celice alg že ob minimalni poškodbi izpostavljene potencialni oksidaciji. Posledično so produkti fermentacije alg dragi. EPK in DHK pridobljeni iz alg sta dražji kot enaka količina teh dveh maščobnih kislin pridobljena iz ribijih olj (Winwood, 2013), vendar pa imajo olja iz alg v primerjavi z ribjimi olji številne prednosti:

- čistost (brez onesnaževal);
- brez neprijetnega vonja in okusa;
- trajnostni vir ω-3 maščobnih kislin;
- primerno za vegetarijance in vegane;
- razmerje DHK in EPK je bolj konstantno (pri ribjem olju in ribah je razmerje odvisno od vrste ribe, njihove prehrane in lokacije, kjer so bile ulovljene (Winwood, 2013; Puc in sod., 2017).

10 Posamezni organizmi, ki so pogosto veliki manj kot milimeter in so zato vidni le z mikroskopom (Puc in sod., 2017).
Produkти iz olja, pridobljenega iz mikraolg so trenutno še relativno nepoznani (Doughman in sod., 2007). Poleg kapsuliranja olja iz mikraolg rodu *Schizochytrium*, ki vsebuje 37,4 % DHK, se sicer vse bolj povečuje zanimanje za dodajanje tega olja v mlečne formule (Winwood, 2013; Doughman in sod., 2007).
4 RASTLINSKA OLJA

Jedilna rastlinska olja so živila, ki so pridobljena izključno iz rastlin. Sestavljajo jih trigliceridi, vsebujejo pa lahko tudi manjše količine drugih maščob, kot so fosfolipidi, neumiljive sestavine in proste maščobne kisline, ki so v oljih naravno prisotne (Pravilnik o kakovosti..., 2009).

4.1 PRIDELAVA IN PREDELAVA RASTLINSKIH OLI

Po tehnoškem postopku se jedilna rastlinska olja razvrščajo na (Pravilnik o kakovosti..., 2009):

- Jedilna rafinirana rastlinska olja: doblijena s postopkom rafinacije iz ene ali več vrst surovih olj.
- Jedilna nerafinirana rastlinska olja: nerafinirana olja, pridobljena s pomočjo mehanskega procesa (npr. stiskanja) in uporabo toplote. Lahko so očiščena le s spiranjem z vodo, dekantiranjem, uporabo toplote ali centrifugiranjem.

11 Odlivanje bistre tekočine z usedline (Amebis, 2016).
• Jedilna hladno stiskana rastlinska olja: nerafinirana olja, ki se pridobivajo izključno s pomočjo mehanskega procesa (npr. stiskanja) brez uporabe toplo-te. Lahko so očiščena le s spiranjem z vodo, dekantiranjem, usedanjem filtriranjem ali centrifugiranjem.

4.1.1 Pridobivanje olj in maščobnih kislin

Iztiskanje olja iz različnih semen poteka z dovajanjem toplo-te in vlage, ki poškodujeta celice bogate z olji, ter pritiska, s katerim se olje izloči iz semen. Olje, pridobljeno s stiskanjem, vsebuje manj stranskih komponent, kot so fosfolipidi, in jih je posledično lažje prečistiti. Z razvojem ekstrakcije s topilo se je povečal izkoristek, zato je postalo pridobivanje olj iz semen, manj bogatih z olji, ekonomsko zanimivijo. Pri tem postopku se kot topilo običajno uporablja industrijski heksan, v zadnjem času pa se delajo raziskave z drugimi topili, npr. superkritičnim ogljikovim dioksidom (Hamm, 2003).

Obstajajo tri glavne poti pridobivanja maščobnih kislin iz rastlinskih olj (Sande in sod., 2017):

• Mehanska izolacija olja iz semenskega tkiva, pri kateri se poslužujejo vroče pare pod visokim pritiskom (70 barov, 250 °C). Kljub temu, da je metoda učinkovita, lahko vodi do sočasnega izločanja neželjenih produktov, na primer raznih grenčin.
• Alkalna kemična hidroliza je prav tako učinkovita, vendar draga metoda, saj pride do nastanka stranskih produktov, ki zahtevajo nadaljnjo obdelavo proizvoda.
• Encimatska hidroliza je najmanj proučena metoda pridobivanja maščobnih kislin. Omogoča uporabo milih pogojev (pritiska in temperature), manjše izgube produkta zaradi segrevanja in manj stranskih reakcij zaradi večje selektivnosti encima. Največja ovira pri uporabi te metode namesto alkalne kemične hidrolize je ustreznost encima, saj je težko najti takega z dobrim izkoristkom, ustrezno katalitsko specifičnostjo in nizko ceno proizvodnje.

Pri proizvodnji izdelkov se lahko uporabljajo ekstrakcijska topila in dodaja aditive v skladu s predpisom, ki ureja ekstrakcijska topila ter aditive za živila (Pravilnik o kakovosti..., 2009).

4.1.2 Transport

Med transportom je potrebno preprečiti prekomerno segrevanje proizvoda, saj ta povzroči slabšo kvaliteto olja. Izogibati se je potrebno tudi vdoru vode v tovor, saj ta pripelje do hidrolize trigliceridov, ki so glavna komponenta olj. Rezultat hidrolize je povišanje vsebnosti prostih maščobnih kislin (Hamm, 2003).

Razstavljanje spojine z vodo tako, da se deli vode vežejo s sestavnimi deli spojine (Amebis, 2016).
4.1.3 Rafiniranje

Čeprav se rastlinska olja v nekaterih primerih pred uživanjem le filtrira, jih najpogosteje tudi prečistijo oz. rafinirajo in s tem zagotovijo njihovo ustreznost za uživanje. Postopek ima več ciljev:

- pridelati čisto, stabilno olje, ki ne vsebuje neželenih manjših komponent (Hamm, 2003), kot to fosfolipidi, monogliceridi, digliceridi, proste kisline, barvila, pigmenti, oksidirane spojine, komponente okusa, kovine v sledovih in žveplove komponente (Gunstone, 2002),
- zagotoviti, da olje, kolikor je mogoče, ohrani tiste manjše komponente, ki so zaželene (Hamm, 2003), kot so antioksidanti in vitaminj, npr. karoteni, tokoferoli (Gunstone, 2002),
- izogniti se strukturnim poškodbam olja, kot so tvorba trans maščobnih kislin ali polarnih spojin (Hamm, 2003),
- minimalizirati stroške predelave (Hamm, 2003).

Za dosego teh ciljev, se običajno poslužujejo enega od dveh najpogostejših postopkov (Hamm, 2003):

- kemično rafiniranje - reakcija olja z alkalnim topilom, običajno natrijevim hidroksidom zmanjša vsebnost prostih maščobnih kislin v olju na sprejemljivo raven,
- fizikalno rafiniranje - ob izpostavljenosti visoki temperaturi in nizkem pritisku pride do ločitve prostih maščobnih kislin in trigliceridov.

Izraz deviško olje se nanaša na rafiniranje olja in pomeni, da olje ni bilo v nobenem postopku rafinacije (Hamm, 2003).

4.1.4 Modifikacija in bogatenje

Termostabilnost večkrat nenasičenih maščobnih kislin je zaradi cis konfiguracije in večkrat nenasičene strukture s kemično sintezo težko doseči, zato se te maščobne kisline pridobiva iz naravnih virov. Za farmacevtske in posebne prehranske namene je potrebno sestavo naravnih olj iz prostih maščobnih kislin modificirati ali obogatiti (Chen in Ju, 2001).

4.1.4.1 Modifikacija

S postopki modifikacije želimo spremeniti fizikalne lastnosti olj. Trije najpogosteji načini modifikacije so (Hamm, 2003):

- Hidrogenacija - uporablja se za zmanjšanje stopnje nenasičenosti olj,
- Frakcioniranje - postopek, pri katerem ločimo tekoč in trden del rastlinskih olj na podlagi zmanjšane topnosti nenasičenih maščobnih kislin ob spremembi temperature,
• Interestrifikacija - premeščanje maščobnokislinskih skupin v trigliceridu znotraj olja (v tem primeru govorimo o intraesterifikaciji) ali izmenjave maščobnokislinskih skupin med različnimi olji (v tem primeru govorimo o interesterifikaciji).

4.1.4.2 Bogatenje
Informacije oziroma podatki o koncentriranju oz. bogatitvi določenih maščobnih kislin v rastlinskih oljih so težje dostopni kot o koncentriranju oz. bogatitvi maščobnih kislin v ribjih oljih. Nekaj raziskav na to temo predstavljamo v nadaljevanju.

Primeri: Chen in Ju (2001) sta želela s solventno kristalizacijo pri nizki temperaturi obogatiti laneno in boragino olje z večkrat nenasičenimi maščobnimi kislinami. Uspela sta doseči dvig koncentracije \(\gamma \)-linolenske kisline v boraginem olju iz 23,4 % na 88,9 % in dvig koncentracije \(\alpha \)-linolenske kisline v lanenem olju iz 55,0 % na 85,7 %. Rahmatullah in sod. (1994) so uspeli z lipazno katalizirano esterifikacijo dvigniti koncentracijo \(\gamma \)-linolenske kisline v boraginem olju iz 20 % na 93 % in dvig koncentracije \(\gamma \)-linolenske kisline v svetlinovem olju na 75 %.

Najpogosteje uporabljene metode za bogatitev večkrat nenasičenih maščobnih kislin so frakcionacija sečnine, ekstrakcija s superkritično tekočino, kromatografija in encimsko katalizirane reakcije (Chen in Ju, 2001), uspešnost koncentriranja pa je odvisna od različnih pogojev, npr. temperature (Rahmatullah in sod, 1994).

4.2 POIMENOVANJE RASTLINSKIH OLJ IN OZNAČEVANJE PROIZVODOV, KI VSEBUJEJO RASTLINSKA OLJA

V Sloveniji pravila o poimenovanju in označevanju jedilnih rastlinskih olj določa Pravilnik o kakovosti jedilnih rastlinskih olj, jedilnih rastlinskih mastih in majonezi. Ta pravilnik določa minimalne pogoje kakovosti, ki jih morajo v prometu izpolnjevati jedilna rastlinska olja, jedilne rastlinske masti in majoneza (Pravilnik o kakovosti..., 2009).

4.2.1 Poimenovanje rastlinskih olj
Rastlinska olja se poimenuje na osnovi surovine, iz katere so pridobljena (Pravilnik o kakovosti..., 2009). V Pravilniku o kakovosti jedilnih rastlinskih olj, jedilnih rastlinskih mastih in majonezi (Pravilnik o kakovosti..., 2009), je izmed olj, ki jih v nadaljevanju podrobneje obravnavamo (olje pšeničnih kalčkov, svetlinovo olje, boragino olje, olje črne kumine, česnovo olje, laneno olje, konopljino olje, olje grozdnih pečk in ričkovo olje), natančno podano poimenovanje le za olje iz grozdnih pečk: olje, pridobljeno iz pečk grozdja vinske trte (Vitis vinifera L.).
Poimenovanje rastlinskih olj in masti določa tudi The International Organisation for Standardisation (ISO). Podaja nam botanična imena rastlinskih vrst za pridobivanje olj, imena surovin, iz katerih pridobivamo olja, ter poimenovanje olj in maščob, ki so predstavljena v Preglednica 10 (ISO 5507, 2002).

Preglednica 10: Poimenovanje rastlinskih vrst v latinščini ter surovin, rastlinskih olj in masti v angleščini (ISO 5507, 2002)

<table>
<thead>
<tr>
<th>Botanično ime vrste</th>
<th>Poimenovanje surovin</th>
<th>Angleško poimenovanje olja</th>
<th>Slovensko poimenovanje olja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borago officinalis L.</td>
<td>Borage (seeds)</td>
<td>Borage (seed) oil</td>
<td>Boragino olje</td>
</tr>
<tr>
<td>Camelina sativa (L.) Crantz</td>
<td>Camelina (seeds)</td>
<td>Camelina seed oil</td>
<td>Ričkovo olje</td>
</tr>
<tr>
<td>Cannabis sativa L.</td>
<td>Cannabis (seeds)</td>
<td>Cannabis oil</td>
<td>Konopljino olje</td>
</tr>
<tr>
<td>Linum usitatissimum L.</td>
<td>Flaxseed, Linseed Solin (seeds) (malolinolske kisline)</td>
<td>Linseed oil Solin oil (malolinolske kisline)</td>
<td>Laneno olje</td>
</tr>
<tr>
<td>Nigella sativa L.</td>
<td>Black cumin seeds</td>
<td>Black cumin seed oil</td>
<td>Olje črne kumine</td>
</tr>
<tr>
<td>Oenothera biennis L.</td>
<td>Evening primrose (seeds)</td>
<td>Evening primrose seed oil</td>
<td>Svietlinovo olje</td>
</tr>
<tr>
<td>Vitis vinifera L.</td>
<td>Grape (seeds)</td>
<td>Grapeseed oil</td>
<td>Olje grozdnih pečk</td>
</tr>
</tbody>
</table>

Seeds = semena, germ = kalček

4.2.2 Označevanje proizvodov, ki vsebujejo rastlinska olja

Jedilna rafinirana rastlinska olja se lahko označijo kot (Pravilnik o kakovosti..., 2009):
- »jedilno rafinirano...(vrsta olja)« (npr. jedilno rafinirano sončnično olje), če je olje narejeno samo iz ene surovine;
- »jedilno rafinirano rastlinsko olje«, če je olje narejeno iz ene ali več vrst olja;
- »jedilno rafinirano rastlinsko olje s...%...(vrsta olja)« (npr. rafinirano rastlinsko olje s 60% olja koruznih kalčkov).

Jedilna rafinirana in nerafinirana rastlinska olja ter jedilna hladno stiskana olja se lahko med seboj mešajo. V tem primeru mora biti mešanica olj označena kot »mešanica jedilnega rastlinskega rafiniranega oziroma nerafiniranega oziroma hladno stiskanega jedilnega rastlinskega olja« z imenom posamezne surovine, ki mešanico sestavlja (Pravilnik o kakovosti..., 2009).

13 V nobenem zanesljivem viru ni slovenskih poimenovanj za omenjena rastlinska olja (z izjemo za poimenovanje olja grozdnih pečk), zato so v stolpcu podana imena, ki so uporabljena v besedilu v nadaljevanju.
Rastlinska olja predstavljajo obnovljiv naravni vir maščobnih kislin (Sande in sod., 2017). Rastlinska olja uporabljena v prehrani so po sestavi mešanica trigliceridov (običajno več kot 95 %) in digliceridov (običajno manj kot 5 %). Druge komponente, ki sestavljajo rastlinska olja, so še tokoferoli in fitosteroli, ki se pojavljajo v sledeh (Hammond, 2003).

Rastlinska olja imajo običajno relativno visok delež večkrat nenasičenih maščobnih kislin, z izjemo kokosovega olja in palmovega olja, ki so večinoma nasičena, ter olivnega olja in repičnega olja, kjer prevladujejo enkrat nenasičene maščobne kisline. Rastlinska olja z visoko vsebnostjo večkrat nenasičenih maščobnih kislin običajno vsebujejo tudi znatne količine α- in γ-tokoferolov (vitaminov E) (Dupont, 1993).

Rastlinska olja, ki jih uporabljamo v prehrani in krmi, vsebujejo različne deleže najpogostejših maščobnih kislin. To so: palmitinska (16:0), stearinska (18:0), oleinska (18:1 Δ⁹), linolna (18:2 Δ⁹,12) in α-linolenska (18:3 Δ⁹,12,15) kislina.

Lastnosti rastlinskih olj so močno odvisne od deležev posameznih maščobnih kislin in glede na namen uporabe je odvisno, kakšno maščobno kislinsko sestavo olja želimo. Pri kuhi na primer običajno uporabljamo olja z večjim deležem enkrat nenasičenih maščobnih kislin, kot je oleinska kislina, saj so te bolj stabilne pri visokih temperaturah (Dyer in sod., 2008).

4.3.1 Kakovost olj

4.3.1.1 Kakovostni parametri jedilnih rafiniranih olj

Jedilna rafinirana olja morajo izpolnjevati naslednje pogoje (Pravilnik o kakovosti..., 2009):

- pri temperaturi 25°C so bistra,

14 Različno oblikovan posamičen ali sestavljen vključek v nekaterih celicah lističev, redkeje stebelc, ki vsebuje zlasti eterična olja (Amebis, 2016).
• imajo značilno barvo,
• pri temperaturi 25°C sta okus in vonj blaga, prijetna in značilna za to olje, brez tujega in žarkega vonja in okusa,
• vsebujejo največ 0,3 % prostih maščobnih kislin,
• vsebujejo največ 0,2 % vode in drugih hlapljivih snovi,
• znaša peroksidno število največ 7 mmol O(2)/kg olja,
• vsebujejo največ 50 mg/kg mila.

4.3.1.2 Kakovostni parametri jedilnih nerafiniranih olj
Jedilna nerafinirana olja morajo izpolnjevati naslednje pogoje (Pravilnik o kakovosti..., 2009):
• imajo značilno barvo,
• imajo prijeten okus in vonj, značilen za vrsto olje, brez tujega žarkega vonja in okusa,
• vsebujejo največ 0,3 % prostih maščobnih kislin,
• znaša peroksidno število največ 10 mmol O(2)/kg olja,
• vsebujejo manj kot 0,05 % nečistoč,
• vsebujejo največ 0,4% vlage in hlapnih snovi.

4.3.1.3 Kakovostni parametri jedilnih hladno stiskanih olj
Jedilna hladno stiskana olja morajo izpolnjevati naslednje pogoje (Pravilnik o kakovosti..., 2009):
• imajo značilno barvo,
• imajo prijeten okus in vonj, značilen za vrsto olja, brez tujega in žarkega vonja in okusa,
• vsebujejo največ 2 % prostih maščobnih kislin,
• imajo peroksidno število največ 7 mmol O(2)/kg olja,
• vsebujejo manj kot 0,15 % nečistoč,
• vsebujejo največ 0,3 % vlage in hlapnih snovi,
• vsebujejo manj kot 0,15 mg/kg stigmastadienov.

4.4 POSAMEZNA RASTLINSKA OLJA
Tako ω-3 kot ω-6 maščobne kisline izvirajo iz rastlin in fotosintetskih alg in jih je moč najti tekom celotne prehranjevalne verige. Živali so sposobne tvoriti nasičene in enkrat nenasičene maščobne kisline, vendar nimajo Δ12 in Δ15 desaturaz, zaradi česar niso sposobne uvesti dvojne vezi bližje, kot na deveti ogljik od metilnega konca verige. ω-3 in ω-6 esencialne maščobne kisline imajo dvojne vezi na tretjem oziroma šestem mestu od metilnega konca verige. Ker rastline vsebujejo različne količine Δ12 in Δ15 desaturaz, so
sposobne sintetizirati 18 ogljikovih atomov dolge maščobne kisline, kot sta linolna kislina in α-linolenska kislina, ki imata dvojno vez tudi na 12. oziroma 15. mestu. Diatomeje (skupina fotosintetizirajočih planktonskeh alg), nekatere glive in mahovi lahko tvorijo linolno in α-linolensko kislinino ter v procesu elongacije in desaturacije ti dve maščobni kislini pretvorijo v dolgoveržne večkrat nenasičene maščobne kisline (maščobne kisline z 20 ali več ogljikovimi atomi ter tremi ali večimi dvojnimimi vežmi: AK, EPK, DHK). Pri diatomejah esencialne maščobne kisline predstavljajo kar do 30 % vseh maščobnih kislin. Potrebno je torej vedeti, da lahko rastlinske vrste, ki vsebujejo Δ12 in Δ15 desaturaze, tvorijo ω-3 maščobne kisline iz ω-6 maščobnih kislin, živali, med njimi tudi ljudje, pa tega ne morejo vršiti. Zato so ω-3 in ω-6 maščobne kisline v njihovi in človekovi prehrani nujne (Smith, 2005).

Glavni vir ω-3 in ω-6 maščobnih kislin v običajni prehrani ljudi so rastlinska olja za kuhanje, katerih maščobno kislinska sestava se močno razlikuje glede na vir olja (Smith, 2005).

V svetu glavni vir rastlinskih olj predstavljajo soja, palme, oljna ogrščica in sončnica. Med njimi sojino olje in olje oljne ogrščice vsebujeta znatne količine α-linolenske kisline, ki je ena izmed esencialnih maščobnih kislin (Dubois, 2007).
Preglednica 11: Primerjava maščobno kislinske sestave izbranih rastlinskih olj v odstotkih (Dubois, 2007)

<table>
<thead>
<tr>
<th>Vrsta rastline (lat.)</th>
<th>Vrsta olja</th>
<th>LK</th>
<th>LK + NMK</th>
<th>LK + ENMK</th>
<th>ALA + ENMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccus nucifera</td>
<td>Kokosovo olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Elaeis guineensis</td>
<td>Palmino olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Olično olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Persea americana</td>
<td>Avoka-dovo olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Brassica napus</td>
<td>Repično olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Olje grozd. pečk</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Oenothera biennis</td>
<td>Svetli-novo olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Nigella sativa</td>
<td>Olje črne kumine</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td>Sončnico olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Triticum aestivum</td>
<td>Olje pšeničnih kalčkov</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Cucurbita pepo</td>
<td>Bučno olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Borago officinalis</td>
<td>Boragino olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Cannabis sativa</td>
<td>Konopljino olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Camelina sativa</td>
<td>Ričkovo olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Linum usitatissimum</td>
<td>Laneno olje</td>
<td>2.5</td>
<td>3.0</td>
<td>6.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Vrsta olja</td>
<td>Kokosovo olje</td>
<td>Palmino olje</td>
<td>Oljčno olje</td>
<td>Avokado olje</td>
<td>Reпиčno olje</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Vrsta rastline (lat.)</td>
<td>Cocus nucifera</td>
<td>Elaeis guineensis</td>
<td>Olea europaea</td>
<td>Persea americana</td>
<td>Brassica napus</td>
</tr>
<tr>
<td>18:3 ω-3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>1.4</td>
<td>9.9</td>
</tr>
<tr>
<td>18:3 ω-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18:4 ω-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:2 ω-6</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:3 ω-6</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:4 ω-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>20:5 ω-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22:2 ω-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22:4 ω-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ΣVNMK</td>
<td>1.9</td>
<td>10.5</td>
<td>10.0</td>
<td>15.2</td>
<td>31.5</td>
</tr>
<tr>
<td>Σω-6</td>
<td>1.8</td>
<td>10.2</td>
<td>9.4</td>
<td>13.8</td>
<td>21.6</td>
</tr>
<tr>
<td>Σω-3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>1.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Razmerje ω-6/ω-3</td>
<td>18</td>
<td>34</td>
<td>16</td>
<td>9.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

MK = maščobne kisline, NMK = nasičene maščobne kisline, ENMK = enkrat nenasičene maščobne kisline, VNMK = večkrat nenasičene maščobne kisline, LRK = lavrinska kislina, MK = miristinska kislina, PK = palmitinska kislina, LK = linolna kislina, NMK = nasičene maščobne kisline, ENMK = enkrat nenasičene maščobne kisline, ALA = α-linolenska kislina
Olja so v Preglednica 11 razvrščena glede na maščobno kislinsko sestavo - olja, kjer prevladuje ista skupina maščobnih kislin, so razvrščena v iste skupine.

V prvi skupini so olja, v katerih prevladujejo nasičene maščobne kisline. Mednje uvrščamo kokosovo olje, kjer prevladujeta lavrinska kislina in miristinska kislina, ter palmino olje, v katerem prevladuje palmitinska kislina (Dubois, 2007).

V drugo skupino uvrščamo olja, pri katerih prevladujejo enkrat nenasičene maščobne kisline. Sem sodijo oljčno olje, ki vsebuje več kot 70 % oleinske kisline, avokadovo olje, lešnikovo olje in druga. V to skupino sodi tudi repično olje, ki pa ima poleg visokega deleža enkrat nenasičenih maščobnih kislin tudi dokaj visok delež α-linolenske kisline (9.9 %). Ker vsebuje repično olje eruka kislino, za katero velja, da je v velikih količinah za živali patogena, so v Kanadi razvili repično olje z manj eruka kisline, imenovano »canola oil«, kakršno je predstavljeno v Preglednica 11 (Dubois, 2007). Tudi v Pravilniku o kakovosti...(2009) sta ločeno podani poimenovanji za:

V zadnji skupini so predstavljena olja, kjer prevladujejo večkrat nenasičene maščobne kisline, delimo pa jo na več podskupin.

Prva podskupina olj, v katero sodita olje grozdnih pečk in svetlinovo olje, vsebuje več kot 60 % linolne kisline. Z vidika razmerja med ω-3 in ω-6 maščobnimi kislinami, je to neugodno, saj je le z uživanjem teh olj težko doseči priporočeno razmerje. Zato je ta olja priporočljivo uživati v kombinaciji z drugimi olji, ki vsebujejo več drugih maščobnih kislin (enkrat nenasičenih, α-linolenske kisline), npr. konopljinim oljem (Dubois, 2007).

V drugi podskupini so olja, ki vsebujejo veliko linolne kisline v povezavi z nasičenimi maščobnimi kislinami, še posebej palmitinsko kislino. V to podskupino sodi olje črne kumine (Dubois, 2007).

V tretji podskupini so sončni olje, olje pšeničnih kalčkov, bučno olje, boragino olje in konopljinno olje. Ta olja vsebujejo visok delež linolne kisline ter enkrat nenasičenih maščobnih kislin (oleinske kisline). Boragino olje se od ostalih olj znotraj te skupine razlikuje po visokem deležu γ-linolenske kisline, ki doseže skoraj 22 %, konopljinno olje pa ima kljub visokemu
deležu α-linolenske kisline, dokaj nizko razmerje med ω-3 in ω-6 maščobnimi kislinami (Dubois, 2007).

V četrtri podskupini so ričkovo olje in olje lanenih semen. Pri teh oljih α-linolenska kislina predstavlja 28-60 % skupnih maščobnih kislin, poleg tega pa so bogata tudi z enkrat nasičenimi maščobnimi kislinami. Iz takih olj je pretvorba v dolgoverižne večkrat nasičene maščobne kisline zelo slaba (manj kot 10 % v EPK in manj kot 5% v DHK). Neučinkovita je tudi pretvorba EPK v DHK (Dubois, 2007).

4.4.1 Olje pšeničnih kalčkov

Rod pšenica (Triticum), ki sodi v družino trav (Poaceae), združuje le gojene rastline, ki so jih vzgojili iz divjerastočih prednikov iz rodu Aegilops. Ostali predstavniki družine trav, ki se jih prav tako uporablja v prehrani so: bambus, oxes, ječmen, rž, proso, koruza (Martinčič in sod., 2007).

Olje pšeničnih kalčkov je gurmansko olje, ki se ga prideluje v majhnih količinah. Poleg α-linolenske kisline vsebuje tudi oleinsko in linolno kislino (Gunstone, 1996).

<table>
<thead>
<tr>
<th>Maščobna kisline</th>
<th>14:0</th>
<th>16:0</th>
<th>16:1</th>
<th>18:0</th>
<th>18:1</th>
<th>18:2</th>
<th>18:3</th>
<th>20:0</th>
<th>20:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje pšeničnih kalčkov</td>
<td>0.2</td>
<td>18.5</td>
<td>0.6</td>
<td>0.5</td>
<td>18.1</td>
<td>55.9</td>
<td>5.3</td>
<td>0.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 12, Preglednica 14, Preglednica 18.

4.4.2 Svetlinovo olje

Svetlinovo olje se zaradi zdravilnih in hranilnih lastnosti uporablja v farmacevtski industriji. Je tudi potencialen vir nenasičenih maščobnih kislin, saj γ-linolenska kislina predstavlja od 8-14 % olja. Zaradi večje vsebnosti γ-linolenske kisline je svetlinovo olje z vidika hranilne vrednosti pomembnejše od ostalih olj, ki tudi vsebujejo to kisline (Rodrigues in sod., 2015).
Preglednica 13: Vsebnost maščobnih kislin v olju iz semen dvoletnega svetlina med 12 mesečnim shranjevanjem (Yunusova in sod., 2010)

<table>
<thead>
<tr>
<th>Mesec shranjevanja</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maščobna kislina</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>12:0</td>
<td>0.2</td>
<td>1.6</td>
<td>SL</td>
<td>SL</td>
<td>1.3</td>
<td>0.3</td>
<td>SL</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>14:0</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>0.1</td>
<td>SL</td>
<td>-</td>
<td>0.1</td>
<td>SL</td>
</tr>
<tr>
<td>16:0</td>
<td>6.5</td>
<td>6.2</td>
<td>6.8</td>
<td>6.4</td>
<td>6.4</td>
<td>7.7</td>
<td>6.7</td>
<td>6.9</td>
<td>7.5</td>
<td>7.3</td>
</tr>
<tr>
<td>18:0</td>
<td>1.7</td>
<td>1.9</td>
<td>0.9</td>
<td>1.1</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>18:1</td>
<td>15.9</td>
<td>17.1</td>
<td>16.5</td>
<td>17.1</td>
<td>16.5</td>
<td>16.1</td>
<td>16.3</td>
<td>17.4</td>
<td>16.9</td>
<td>17.1</td>
</tr>
<tr>
<td>18:2</td>
<td>67.9</td>
<td>66.2</td>
<td>68.2</td>
<td>67.6</td>
<td>66.4</td>
<td>67.0</td>
<td>67.5</td>
<td>66.8</td>
<td>66.1</td>
<td>66.2</td>
</tr>
<tr>
<td>γ-18:3</td>
<td>7.8</td>
<td>7.0</td>
<td>7.6</td>
<td>7.8</td>
<td>7.7</td>
<td>7.0</td>
<td>7.8</td>
<td>6.8</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Σ nasičene</td>
<td>8.4</td>
<td>9.7</td>
<td>7.7</td>
<td>7.5</td>
<td>9.4</td>
<td>9.9</td>
<td>8.4</td>
<td>9.0</td>
<td>9.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Σ nenasičene</td>
<td>91.6</td>
<td>90.3</td>
<td>92.3</td>
<td>92.5</td>
<td>90.6</td>
<td>90.1</td>
<td>91.6</td>
<td>91.0</td>
<td>90.2</td>
<td>90.5</td>
</tr>
</tbody>
</table>

SL = v sledeh

Preglednica 13 nam prikazuje spremembe v vsebnosti maščobnih kislin olja semen dvoletnega svetlina, ki je bil zaprt v cevčici hranjen v hladilniku pri 8°C. Iz tabele je razvidno, da sestava in razmerje maščobnih kislin ostajata relativno nespremenjena (Yunusova in sod., 2010).

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 13, Preglednica 14.

4.4.3 Boragino olje

Boragino olje pridobivamo iz rastline zdravilna boraga (Borago officinalis). Rod boraga (Borago) sodi v družino shrkolistovk (Boraginaceae), znotraj katere najdemo tudi pljučnik, gabez, spominčice in druge rodove. Predstavniki tega rodu so lahko enoletnice ali trajnice, visoke do 70 cm (Martinčič in sod., 2007). Poleg svetlinovega olja je tudi boragino olje bogat vir γ-linolenske kisline, kar prikazuje Preglednica 14 (Gunstone, 1996, Webb, 2006).

Preglednica 14: Maščobno kislinska sestava nekaterih vrst rastlinskih olj v odstotkih (Gunstone, 1996)

<table>
<thead>
<tr>
<th>Vrsta olja</th>
<th>Maščobne kisline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16:0</td>
</tr>
<tr>
<td>Boragino olje</td>
<td>10</td>
</tr>
<tr>
<td>Svetlinovo olje</td>
<td>7</td>
</tr>
<tr>
<td>Olje grozdnih pečk</td>
<td>7</td>
</tr>
<tr>
<td>Olje pšeničnih kalčkov</td>
<td>13</td>
</tr>
<tr>
<td>Laneno olje</td>
<td>6</td>
</tr>
</tbody>
</table>

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 14, Preglednica 17.
4.4.4 Olje črne kumine

Preglednica 15: Sestava olja maroše črne kumine v odstotkih (Gharby in sod., 2013)

<table>
<thead>
<tr>
<th>Maščobna kislina</th>
<th>Hladno stisnjen izvleček</th>
<th>Solventna ekstrakcija</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 14:0</td>
<td>1±0.1</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>C 16:0</td>
<td>13.1±0.2</td>
<td>11.9±0.2</td>
</tr>
<tr>
<td>C 16:1</td>
<td>0.2±0.1</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>C 18:0</td>
<td>2.3±0.1</td>
<td>3.2±0.1</td>
</tr>
<tr>
<td>C 18:1</td>
<td>23.8±0.1</td>
<td>24.9±0.5</td>
</tr>
<tr>
<td>C 18:2</td>
<td>58.5±0.1</td>
<td>56.5±0.7</td>
</tr>
<tr>
<td>C 18:3</td>
<td>0.4±0.1</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>C 20:0</td>
<td>0.5±0.1</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>Σ nasičene maščobne kisline</td>
<td>16.8±0.5</td>
<td>15.5±0.5</td>
</tr>
<tr>
<td>Σ nenasičene maščobne kisline</td>
<td>82.9±0.5</td>
<td>82.1±0.5</td>
</tr>
</tbody>
</table>

Iz Preglednica 15 je razvidno, da ni večjih razlik v maščobno kislinski sestavi olja iz semen črne kumine med hladno stiskanim oljem in s solventno ekstrakcijo. Linolna in oleinska kislina predstavljata glavnino nenasīčenih maščobnih kislin in skupno zasedata več kot 80% vseh maščobnih kislin. Različna vsebnost posameznih maščobnih kislin med različnimi olji črne kumine je lahko posledica genetske raznolikosti semen, različnih pridelovalnih postopkov ali pa zaradi pobiranja pridelka v različnih obdobjih (Gharby in sod., 2013).

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 15.

4.4.5 Česnovo olje

Za maščobno kislinsko sestavo glej: Preglednica 16.

15 Zelo skrajšano in odebeljeno podzemno steblo z omesenelimi luskolisti (Martinčič in sod., 2007).
4.4.6 Laneno olje

Za maščobno kislinsko sestavo glej: Preglednica 5, Preglednica 8, Preglednica 11, Preglednica 14, Preglednica 16, Preglednica 17.

<table>
<thead>
<tr>
<th>Maščobne kisline</th>
<th>Česen</th>
<th>Lanena semena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kemična hidroliza</td>
<td>Encimatska hidroliza</td>
</tr>
<tr>
<td>C 10:0</td>
<td>0.2±0.01</td>
<td>-</td>
</tr>
<tr>
<td>C 12:0</td>
<td>0.4±0.01</td>
<td>0.2±0.01</td>
</tr>
<tr>
<td>C 14:0</td>
<td>0.2±0.0</td>
<td>0.2±0.0</td>
</tr>
<tr>
<td>C 15:0</td>
<td>3.4±0.07</td>
<td>3.4±0.07</td>
</tr>
<tr>
<td>C 16:0 (palmitinska)</td>
<td>6.74±0.13</td>
<td>8.5±0.17</td>
</tr>
<tr>
<td>C 16:1</td>
<td>0.1±0.01</td>
<td>0.1±0.01</td>
</tr>
<tr>
<td>C 17:0</td>
<td>0.3±0.01</td>
<td>0.1±0.01</td>
</tr>
<tr>
<td>C 18:0</td>
<td>5.39±0.11</td>
<td>6.2±0.02</td>
</tr>
<tr>
<td>C 18:1 (oleinska)</td>
<td>19.23±0.37</td>
<td>18.7±0.37</td>
</tr>
<tr>
<td>C 18:2 (linolna)</td>
<td>13.76±0.27</td>
<td>12.5±0.24</td>
</tr>
<tr>
<td>C 18:3</td>
<td>52.62±1.03</td>
<td>45.9±0.9</td>
</tr>
<tr>
<td>C 20:0</td>
<td>0.6±0.01</td>
<td>-</td>
</tr>
<tr>
<td>C 20:1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 22:0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Druge</td>
<td>2.13±0.04</td>
<td>7.1±0.14</td>
</tr>
</tbody>
</table>

Vzorci, v katerih so zasledili visoke vsebnosti \(\omega-9\) maščobne kisline (C 18:1) so olivno olje (72,3 %), repično olje (56,9 %) in sezamovo olje (37,6 %). Vzorci bogati z \(\omega-6\) maščobnimi kislinami (C 18:2) so sončnično olje (49,8 %), sojino olje (44,9 %), česnovo olje (39,5 %) (Preglednica 16) in koruzno olje (38,9 %). Vzorec bogat z \(\omega-3\) maščobnimi kislinami (C 18:3) pa je predvsem vzorec olja lanenih semen (45,9 %) (Preglednica 16).\(^{16}\)

Preglednica 17 prikazuje maščobno kislinsko sestavo olja lanenih semen in boraginega olja, kot jo navaja drug vir.

\(^{16}\) Pozorni moramo biti predvsem na esencialne maščobne kisline.
Preglednica 17: Maščobno kislinska sestava olja lanenih semen in olja borage v odstotkih (Dyer in sod., 2008)

<table>
<thead>
<tr>
<th>Maščobne kisline</th>
<th>Laneno olje</th>
<th>Boragino olje</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>18:0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>18:1</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>18:2</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>18:3</td>
<td>47</td>
<td><1</td>
</tr>
<tr>
<td>20:1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>nenavadne</td>
<td>-</td>
<td>23</td>
</tr>
</tbody>
</table>

4.4.7 Konopljino olje

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 18.

4.4.8 Olje grozdnih pečk

Olje grozdnih pečk skupaj z oljem pšeničnih kalčkov in nekaterimi drugimi imenujemo gurmanska olja. Pridobivajo se v majhnih količinah in uporabljajo v prehrani, kozmetiki in farmacevtiki. Olje grozdnih pečk je bogato z linolno kislimo in v nasprotju z boraginim in svetlinovim oljem revno z γ-linolensko kislimo (Gunstone, 1996).

Za maščobno kislinsko sestavo glej: Preglednica 5, Preglednica 11, Preglednica 14, Preglednica 18.
Iz raziskave, predstavljene v Preglednici 18, je razvidno, da je v večini vzorcev rastlinskih olj mnogo večja vsebnost nenasičenih maščobnih kislin, tako enkrat nenasičenih kot večkrat nenasičenih, kot nasičenih maščobnih kislin, pri opazovanih treh vzorcih pa je očitno, da v veliki meri prevladujejo večkrat nenasičene maščobne kisline. Med nenasičenimi kislinami je pri vseh treh primerih prevladovala palmitinska kislina (C 16:0), med večkrat nenasičenimi pa je pri vseh treh vzorcih prevladovala linolna kislina (C 18:2) (Orsavova in sod., 2015).

4.4.9 Ričkovo olje

Rod riček (Camelina) sodi v družino križnic (Brassicaceae), med katere uvrščamo tudi hren, ogrščico, gorčico, redkev in druge. Znotraj rodu najdemo v Sloveniji 4 vrste (Martinčič in sod., 2007).

Semena navadnega rička (Camelina sativa L. Crantz) so v svetu malo poznana in slabo izkoriščena, čeprav so polna olj. Pogosto vrsto obravnavajo kot travo in jo imenujejo nepravi (ang. »false«) lan in nizozemski lan. Z agronskega vidika gre za nezahtevno vrsto, saj ni močno odvisna od vode, v pridelek ni potrebno vložiti veliko, zraste pa lahko v kratkem času (Belayneh in sod., 2015).

Za maščobno kislinsko sestavo glej: Preglednica 11, Preglednica 19.
Preglednica 19: Maščobno kislinska sestava olja v odstotkih iz semen rička (Camelina sativa) glede na različne analize (Belayneh in sod., 2015)

<table>
<thead>
<tr>
<th>Maščobne kisline</th>
<th>Ekstrakcija po Soxhletu</th>
<th>Hladno stiskanje</th>
<th>Superkritičen CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16:0</td>
<td>5.7±0.1</td>
<td>5.7±0.0</td>
<td>5.8±0.0</td>
</tr>
<tr>
<td>C 18:0</td>
<td>2.4±0.0</td>
<td>2.4±0.0</td>
<td>2.4±0.0</td>
</tr>
<tr>
<td>C 18:1</td>
<td>15.8±0.1</td>
<td>15.7±0.1</td>
<td>15.9±0.1</td>
</tr>
<tr>
<td>C 18:2</td>
<td>18.4±0.1</td>
<td>18.5±0.1</td>
<td>18.3±0.2</td>
</tr>
<tr>
<td>C 18:3</td>
<td>33.0±0.1</td>
<td>32.8±0.2</td>
<td>33.0±0.3</td>
</tr>
<tr>
<td>C 20:0</td>
<td>1.7±0.0</td>
<td>1.7±0.0</td>
<td>1.7±0.0</td>
</tr>
<tr>
<td>C 20:1</td>
<td>15.0±0.1</td>
<td>15.1±0.0</td>
<td>14.9±0.1</td>
</tr>
<tr>
<td>C 20:2</td>
<td>1.8±0.0</td>
<td>1.8±0.0</td>
<td>1.8±0.0</td>
</tr>
<tr>
<td>C 20:3</td>
<td>1.3±0.0</td>
<td>1.3±0.0</td>
<td>1.2±0.0</td>
</tr>
<tr>
<td>C 22:0</td>
<td>0.4±0.0</td>
<td>0.4±0.0</td>
<td>0.3±0.0</td>
</tr>
<tr>
<td>C 22:1</td>
<td>3.4±0.0</td>
<td>3.5±0.0</td>
<td>3.3±0.1</td>
</tr>
<tr>
<td>C 22:2</td>
<td>0.5±0.0</td>
<td>0.5±0.0</td>
<td>0.5±0.0</td>
</tr>
<tr>
<td>C 24:1</td>
<td>0.6±0.0</td>
<td>0.7±0.0</td>
<td>0.6±0.0</td>
</tr>
<tr>
<td>Nasičene MK</td>
<td>10.2±0.1</td>
<td>10.2±0.1</td>
<td>10.2±0.1</td>
</tr>
<tr>
<td>Enkrat nenasičene MK</td>
<td>34.8±0.2</td>
<td>34.9±0.1</td>
<td>34.7±0.3</td>
</tr>
<tr>
<td>Večkrat nenasičene MK</td>
<td>55.0±0.1</td>
<td>54.9±0.0</td>
<td>54.8±0.5</td>
</tr>
</tbody>
</table>

Preglednica 19 prikazuje, da metoda ekstrakcije nima pomembnega vpliva na maščobno kislinsko sestavo olja. Pri vseh treh načinih ekstrakcije so prevladovale večkrat nenasičene maščobne kisline (54,8 – 55 %), po zastopanosti jim sledijo enkrat nenasičene maščobne kisline (34,7 – 34,9 %), najmanjši delež pa predstavljajo nasičene maščobne kisline (10,2 %).

Med posameznimi maščobnimi kislinami pri vseh treh načinih ekstrakcije prevladuje α-linolenska kislina (C 18:3) z 32,8 – 33,0 % deležem. Sledi linolna kislina (C 18:2) z 18,3 – 18,5 % deležem, oleinska kislina (C 18:1) z 15,7 – 15,8 % deležem (Belayneh in sod., 2015).

4.5 RASTLINSKA OLJA IN DRUGE MAŠČOBE V PREHRANSKIH DOPOLNILIH NA SLOVENSKEM TRGU

17 V bazo P3 Professional so uvrščeni izdelki, ki jih proizvajalci ali distributerji opredelijo kot prehranska dopolnila, ne glede na strokovno mnenje upravljavcev baze.
Tako so v tej kategoriji dejansko tudi vsa prehranska dopolnila z omega-3 maščobnimi kislinami. Sočasna uvrstitev v obe kategoriji pomeni, da je potrebno pri jemanju teh izdelkov oziroma presoji njihove dozirne sheme upoštevati ne samo zaužite količine mikrohranil, v prvi vrsti maščobnih kislin, pa tudi vsebovanih vitaminov ipd., temveč tudi obseg vnosa maščob in njihovo kalorično vrednost. Npr. pri nizki vsebnosti ω-3 maščobnih kislin v posamezni kapsuli bi morali za ustrezen vnos le teh morali zaužiti tudi po 5 ali celo 6 enot tehnološke oblike na dan. To pa obenem pravzaprav pomeni npr. 3 g maščob, ki pri rednem, dolgotrajnem uživanju ni nujno zanemarljiv kalorični vnos (sprosti 27 kcal) in vnos dodatnih maščob kot takih. Odrasla zdrava ženska, stara od 25 do 50 let z zmerno telesno aktivnostjo (NIJZ, 2016c) naj bi na primer zaužila 2100 kcal na dan, do 30% od tega z maščobami, kar pomeni 630 kcal. S šestimi kapsulami ribjega olja tako vsak dan poveča svoj energetski vnos z maščobami za slabih 5%. Če želi ohranjati energetsko bilanco, mora ekvivalentno temu vnosu zmanjšati vnos energije z drugimi makrohranili, najbolje maščobami, pri katerih so zaužite količine zelo natančno dozirane in pravzaprav zamenjavate energijo s maščobami.

Uporaba kapsul kot tehnološke formulacije zagotavlja doziranje, vendar je za izpolnjevanje uvrstitev med prehranske dopolnila potreben še dodaten pogoj koncentracije. Če imamo v prehrani za vnos ω-3 maščobnih kislin na voljo ribe, je pravzaprav koncentriranje, ne glede na uporabljeno tehnološko obliko. Pri rastlinskih oljih pa je potrebno pravzaprav predstavljati še kot osnovno obliko ţivel, ki ga uživamo. Ker z njimi vnašamo makrohranil, zelo natančno doziranje ni tako pomembno. Čistega olja tudi ne moremo koncentrirati. Pojavi se logično vprašanje, kaj torej proizvajalci oz. distributerji uvrščajo različna olja med prehranska dopolnila.

Vsebnost različnih maščobnih kislin, ki na deklaraciji niso količinsko ovrednotene, ni pravi odgovor. Čeprav jih neko olje vsebuje, pa se pri tem s tehnološkim postopkom ne zagotavlja neke količine, za katero proizvajalec stoji in podpira na deklaraciji, in za katero s tehnološko obliko in pakiranjem omogoča definirano doziranje, gre še vedno le za običajno ţivilo.

Če analiziramo deleže vseh izdelkov te kategorije glede na posamezne tehnološke oblike, ki so prikazani v Grafičnem prikazu št. 8, ugotovimo, da se 122 izdelkov v opazovanem vzorcu nahaja v obliki olj. In pri teh se lahko vprašamo, ali gre resnično za prehranska dopolnila oz. običajna ţivila.
Med izdelki v tekoči obliki v tej kategoriji je 36 takih, ki ne navajajo standardiziranega doziranja, torej jih pravzaprav ne bi smeli uvrščati med prehranska dopolnila. Ostali pa navajajo doziranje na različne načine, npr. z žlico, čajno žličko, kapljicami itn. Pri tem je uporabnik v primeru navedbe doziranj v gramih oz. mililitrih postavljen pred izziv, kako bo te količine izmeril.

Raznolikost dozirnih shem ilustriramo na primeru izdelkov, ki se dozirajo s čajno žličko, in so prikazane v Grafičnem prikazu št. 9.
Različna rastlinska olja so cenovno precej izenačena, če upoštevamo količine, potrebne za en mesec redne uporabe. S takim preračunom zmanjšamo vpliv različnih pakiranj in dozirnih shem, izpustimo pa vse izdelke, za katere ni standardiziranega doziranja (npr. navodilo »pokapljamo po solati«, »polijemo po jedi« ipd.).

Grafični prikaz 10: Primerjava povprečne, najnižje in najvišje maloprodajne cene rastlinskih olj, ki se tržijo kot prehranska dopolnila, in sodijo v kategorijo Maščobe, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.

Zanimivo je, da so, podobno kot v kategoriji Maščobne kisline, izdelki s certifikati kakovosti proizvodnje načelno cenejši kot tisti, ki takih certifikatov nimajo, kar ne drži pri najcenejših primerkih in je razvidno iz Grafičnega prikaza št. 11.

Grafični prikaz 11: Primerjava povprečne, najnižje in najvišje maloprodajne cene rastlinskih olj, ki se tržijo kot prehranska dopolnila, in sodijo v kategorijo Maščobe, glede na to, ali imajo certifikat kakovosti proizvodnje ali ne, po podatkih Poročila o analizi maloprodajnih cen prehranskih dopolnil na slovenskem trgu za leto 2017 Inštituta za raziskave in razvoj kakovosti; objavljeno z dovoljenjem Inštituta.
Tudi v tej kategoriji prehranskih dopolnil se pri tujih izdelkih srečamo s težavami zaradi slabih prevodov, ki so pogosto vsebinsko vprašljivi. Za kategorijo Maščobe je tipična težava razumevanje razlike med eteričnimi in maščobnimi olji. Eterična olja (ang. Essential oils) imajo drugačno sestavo kot maščobna olja in jih načeloma ne uvrščamo med hranila. Tudi pridobivamo jih z drugačnimi tehnološkimi postopki, zaradi česar je tudi varnostni profil izdelkov s temi sestavinami popolnoma drugačen. Dobesedno prevajanje je tako zavajajoče.

Sklenemo lahko, da imajo tako proizvajalci in njihovi zastopniki kot tudi distributerji številne izzive za bolj transparentne predstavitve prehranskih dopolnil iz pričujočih kategorij. A le tako bodo lahko potrošniki izbirali kakovostnejše in ne le cenejše izdelke.

Belayneh H. D., Wehling R. L., Cahoon E., Ciftci O. N. 2015. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. The Journal of Supercritical Fluids, 104: 153-159

Celik M. 2008. Seasonal changes in the proximate chemical compositions and fatty acids of chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus) from the north eastern Mediterranean Sea. International journal of food science & technology, 43, 5: 933-938

Ciriminna R., Meneguzzo F., Delisi R., Pagliaro M. 2017. Enhancing and improving the extraction of omega-3 from fish oil. Sustainable chemistry and pharmacy, 5: 54-59

EFSA Panel on Biological Hazards (BIOHAZ). 2010. Scientific opinion on fish oil for human consumption. Food hygiene, including rancidity. EFSA Journal, 8, 10: 1874

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2010. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. The EFSA Journal, 8, 3: 1461

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2012. Scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA Journal, 10, 7: 2815

Galliani G., Brucka M. A. 2016. Cholesteryl esters from squid oil contain only saturated fatty acids, whereas the oil is rich in EPA and DHA and contains almost no saturated fatty acids. European journal of lipid science and technology, 118, 3: 453-460

Harris W.S. 2004. Fish oil supplementation: evidence for health benefits. Cleveland Clinic journal of medicine, 71, 3: 208-221

Ivanova S., Marinova G., Batchvarov V. 2016. Comparison of fatty acid composition of various types of edible oils. Bulgarian journal of agricultural science, 22, 5: 849-856

Maqsood S., Benjakul S., Kamal-Eldin A. 2012. Extraction, processing, and stabilization of health-promoting fish oils. Recent patents on food, nutrition & agriculture, 4, 2: 141-147

Pike I. H., Jackson A. 2010. Fish oil: production and use now and in the future. Lipid technology, 22, 3: 59-61

Pravilnik o kakovosti jedilnih rastlinskih olj, jedilnih rastlinskih masteh in majonezi. 2009. Ur. L. RS, št. 79/09, 94/09 – popr. in 26/14 – ZKme-1B

71

Sande D., Colen G., dos Santos G. F., Ferraz V. P., Takahashi J. A. 2017. Production of omega 3, 6, and 9 fatty acids from hydrolysis of vegetable oils and animal fat with Colletotrichum gloeosporioides lipase. Food Science and Biotechnology, 27, 2: 537-545

