Tadej Knez

Analiza nizkonapetostnega distribucijskega omrežja z gospodinjskimi odjemalci individualne gradnje

Magistrsko delo

Ljubljana, 2018
Zahvala

Zahvaljujem se mentorju, izr. prof. dr. Marku Čepinu za strokovno pomoč, podporo in nasvete pri izdelavi mojega zaključnega dela. Poleg tega se mu zahvaljujem za pomoč med študijem, saj vedno rad prisluhne študentom in se trudi, da od študija odnesemo le najboljše.

Zahvaljujem se podjetju Elektro Ljubljana d.d. za uporabo programske opreme, podatkov in prostorov ter zaposlenim za nasvete pri izdelavi zaključnega dela.

Posebno se zahvaljujem svojim staršem, ki so mi omogočili študij in me vselej podpirali, pomagali ter mi po potrebi svetovali. Zahvaljujem se tudi sorodnikom, sošolcem in prijateljem, ki so mi vedno stali ob strani.
Vsebina

1 **Uvod**

2 **Napetostni profil v distribucijskem omrežju**

3 **Analiza pretokov moči v omrežju**
 3.1 Model omrežja
 3.2 Metode za izračun pretokov moči
 3.2.1 Gaussova in Gauss-Seidlova iteracijska metoda
 3.2.2 Newton-Raphsonova iteracijska metoda
 3.2.3 Razklopljena in hitra razklopljena metoda

4 **Načrtovanje distribucijskega omrežja**
 4.1 Kriteriji načrtovanja razvoja SN omrežja
 4.1.1 Kriteriji za ocenjevanje zanesljivosti napajanja porabnikov
 4.1.2 Kriteriji tehničnega vrednotenja
 4.1.3 Kriteriji ekonomskega vrednotenja
 4.2 Kriteriji načrtovanja NN omrežja
 4.2.1 Referenčna impedanca
 4.2.2 Mejni padci napetosti
 4.2.3 Računske obremenitve NN vodov
 4.2.4 Dimenzioniranje transformatorjev SN/NN

5 **Programski paket Gredos**

6 **Model NN omrežja in izračun napetostnih razmer**
 6.1 Model
6.2 Predpostavke pri izračunu .. 43
 6.2.1 Moč domače električne polnilnice .. 43
 6.2.2 Moč toplotne črpalke .. 43
 6.2.3 Moč sončne elektrarne .. 45
 6.2.4 Dopustni padci napetosti ... 46
6.3 Izračun napetostnih razmer .. 47
 6.3.1 Analiza vpliva električnih polnilnic ... 47
 6.3.2 Analiza vpliva toplotnih črpalk .. 50
 6.3.3 Analiza vpliva električnih polnilnic in toplotnih črpalk 52
 6.3.4 Analiza vpliva sončnih elektrarn in električnih polnilnic 55
 6.3.5 Analiza vpliva električnih polnilnic, toplotnih črpalk in sončnih elektrarn ... 58

7 Zaključek ... 63

Literatura ... 65
Seznam slik

Slika 2.1: Model nizkonapetostnega omrežja13
Slika 2.2: Kazalčni diagram modela NN omrežja14
Slika 2.3: Napetostni profil v NN omrežju15
Slika 3.1: Model omrežja za analizo pretokov moči18
Slika 3.2: Shema izračuna z Newton-Raphsonovo metodo25
Slika 6.1: Model NN omrežja v Gredosu38
Slika 6.2: Primer dnevnega diagrama porabe gospodinjskih odjemalcev38
Slika 6.3: Poraba gospodinjstev v nočnih urah zaradi toplotnih črpalk40
Slika 6.4: Diagram največje moči sončne elektrarne za zimo in poletje42
Seznam tabel

Tabela 4.1: Dovoljeno trajno in kratkotrajno obremenjevanje transformatorjev ... 28
Tabela 4.2: Največje dolžine kablov v NN omrežju 31
Tabela 4.3: Potrebna nazivna moč transformatorja glede na število odjemalcev ... 33
Tabela 6.1: Vhodni podatki analize omrežja z električnimi polnilnicami 43
Tabela 6.2: Rezultati pri obstoječem stanju in stanju z električnimi polnilnicami ... 44
Tabela 6.3: Vhodni podatki analize omrežja s toplotnimi črpalkami 46
Tabela 6.4: Rezultati pri obstoječem stanju in stanju s toplotnimi črpalkami .. 47
Tabela 6.5: Vhodni podatki za analizo omrežja z električnimi polnilnicami in toplotnimi črpalkami ... 49
Tabela 6.6: Rezultati analize z električnimi polnilnicami in toplotnimi črpalkami ... 50
Tabela 6.7: Vhodni podatki za analizo omrežja s sončnimi elektrarnami in električnimi polnilnicami ... 51
Tabela 6.8: Rezultati analize s sončnimi elektrarnami in električnimi polnilnicami ... 52
Tabela 6.9: Vhodni podatki analize omrežja z električnimi polnilnicami, toplotnimi črpalkami in sončnimi elektrarnami 54
Tabela 6.10: Rezultati analize z električnimi polnilnicami, toplotnimi črpalkami in sončnimi elektrarnami ... 55
Seznam uporabljenih okrajšav

<table>
<thead>
<tr>
<th>Okrajšava</th>
<th>Natančna značba</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES</td>
<td>elektroenergetski sistem</td>
</tr>
<tr>
<td>RTP</td>
<td>razdelilno transformatorska postaja</td>
</tr>
<tr>
<td>TP</td>
<td>transformatorska postaja</td>
</tr>
<tr>
<td>RV</td>
<td>razpršeni vir</td>
</tr>
<tr>
<td>NN</td>
<td>nizka napetost</td>
</tr>
<tr>
<td>SN</td>
<td>srednja napetost</td>
</tr>
<tr>
<td>VN</td>
<td>visoka napetost</td>
</tr>
<tr>
<td>DC</td>
<td>enosmerni tok (ang. Direct Current)</td>
</tr>
<tr>
<td>GOI</td>
<td>gospodinjski odjem individualne gradnje</td>
</tr>
<tr>
<td>GOB</td>
<td>gospodinjski odjem blokovne gradnje</td>
</tr>
<tr>
<td>GOV</td>
<td>veliki gospodinjski odjem</td>
</tr>
<tr>
<td>OOV</td>
<td>veliki ostali odjem</td>
</tr>
<tr>
<td>OOM</td>
<td>mali ostali odjem</td>
</tr>
<tr>
<td>SE</td>
<td>sončna elektrarna</td>
</tr>
<tr>
<td>RP</td>
<td>razdelilna postaja</td>
</tr>
</tbody>
</table>
Povzetek

Zaradi povečevanja porabe električne energije, se distribucijsko omrežje neprestano širi, zato je ključnega pomena pravilno načrtovanje omrežja.

z drugačnimi kombinacijami obremenitve je omrežje ustrezalo kriterijem načrtovanja.

Omrežje bi bilo pri prevelikih obremenitvah potrebno ojačati ali pa bi bilo potrebno v omrežje vključevati take porabnike, ki lahko konično moč prilagajajo obremenjenosti omrežja.

Ključne besede: padci napetosti, načrtovanje distribucijskega omrežja, Gredos, električne polnilnice, toplotne črpalke, sončne elektrarne
Abstract

Due to increasing consumption of electric energy, the distribution network is constantly expanding, so it is very important that the network is properly planned.

Firstly, the problem of voltage drops is explained, which is one of the main reasons why network analysis is needed. Then, a theory of power flow between two nodes is described where a derivation of the equations used in the analysis of power flow is presented. An analysis of power flow would not be possible without the iterative methods. Gauss, Gauss-Seidl, decoupled and fast decoupled methods are presented. The main focus is placed on Newton-Raphson's method, which is suited for analysis in the distribution network. Then an overview of planning criteria for medium and low voltage network development is made. Technical criteria, such as voltage drops limitations, loading of distribution lines and transformers have been described. The criteria for low voltage network is relatively new, because it takes into account increase of consumption due to electrification of heating and traffic and the impact of diffuse sources. Also Gredos software is presented, which is the main tool for network planning and analyzing in Slovenian distribution companies.

Finally, an example of using Gredos is shown. An example of a low voltage network with 31 customers was selected, which was used to prepare the model in the Gredos software. Using the developed model, an analysis of the existing state of operation and state of operation with increased network load due to domestic charging stations, heating pumps and solar power stations is made. The analysis showed that the current state corresponds the technical criteria. The load with 16 electric car charging stations would not correspond the criteria. Also the load with 16 electric car charging stations and 16 heating pumps would not correspond the criteria. There were too high voltage rises in state with 16 solar power plant. In
operational states with different combinations of load network corresponds the criteria.

The network should be strengthened at too high loads or consumers, which can adjust their own load to network load, should be involved.

Key words: voltage drop, distribution network planning, software Gredos, charging stations, heating pumps, solar power stations
1 Uvod

Tehnični napredek današnje civilizacije bi lahko bil popolnoma drugačen, če ne bi prišlo do izuma električnega generatorja in izgradnje prvih elektroenergetskih sistemov. Od takrat smo postali popolnoma odvisni od električne energije in si brez nje ne predstavljamo več našega vsakdana. Elektroenergetski sistem se je od svojih začetkov neprestano širil in se širi še danes. Razvili smo ga do te mere, da spada med najkompleksnejše sisteme, ki jih poznamo.

Namen magistrskega dela je predstaviti metode za izračun pretokov moči v elektroenergetskem sistemu in kriterije načrtovanja srednjenapetostnega ter nizkonapetostnega omrežja. Za izbrano nizkonapetostno omrežje z gospodinjskimi odjemalci individualne gradnje je potrebno izbrati obratovalna stanja in analizirati padce napetosti v točkah omrežja. Raziskati je potrebno napetostne razmere v omrežju glede na povečano porabo ali proizvodnjo v sistemu, ki je lahko posledica električnih avtomobilov, toplotnih črpalk ali sončnih elektrarn. Potrebno je ugotoviti,
če omrežje zadostuje kriterijem načrtovanja pri znatnem povečanju porabe in proizvodnje.
2 Napetostni profil v distribucijskem omrežju

Distribucijski sistem sestavljajo transformatorji, ki v RTP-jih pretvarjajo visoko napetost na srednjo, srednje napetostni vodi oz. kabli, distribucijski transformatorji in nizko napetostni kabli. Vse omenjene naprave imajo pri prenosu energije do končnega uporabnika izgube, ki so najbolj vidne pri znižanju napetosti pri porabnikih.

S pomočjo modela nizkonapetostnega omrežja, ki ga prikazuje slika 2.1, bomo izpeljali enačbe za izračun padcev napetosti v NN omrežju.

\[U_1 = Z \cdot I + U_2 \]

\[U_2 \cdot I^* = P + jQ \]

Slika 2.1: Model nizkonapetostnega omrežja
\[I = \frac{P - jQ}{U_z^2} \quad (2.3) \]

\[Z_p = R + jX \quad (2.4) \]

\(P \) in \(Q \) sta delovna in jalova moč porabnika, \(R \) upornost voda in \(X \) njegova reaktanca. Če združimo enačbe (2.1), (2.3) in (2.4), dobimo:

\[U_1 = U_2 + \frac{R \cdot P + X \cdot Q}{U_z^2} + j \frac{X \cdot P - R \cdot Q}{U_z^2} \quad (2.5) \]

Enačbo (2.5) lahko, glede na kazalčni diagram na sliki 2.2, napišemo:

\[U_1 = U_2 + \Delta U_d + j \Delta U_q \quad (2.6) \]

Slika 2.2: Kazalčni diagram modela NN omrežja

V distribucijskem sistemu velja, da je kot \(\delta \), med napetostjo na začetku in na koncu voda, zelo majhen [1]. Ob tej predpostavki lahko v enačbi (2.6) imaginarni del \(\Delta U_q \) zanemarimo in tako ostane:

\[\Delta U \cong \Delta U_d = \frac{R \cdot P + X \cdot Q}{U_z^2} \quad (2.7) \]

Iz enačbe (2.7) vidimo, da je v danem omrežju padec napetosti na vodo direktno povezan z njegovo obremenitvijo. Torej večja kot bo moč porabnika, večji bo padec napetosti na vodo.

Ena od rešitev za zmanjševanje padcev napetosti je tudi vključevanje razpršenih virov v distribucijsko omrežje. RV na koncu voda zmanjšuje preneseno moč po vodu, ker porabnik ne potrebuje celotne moči iz omrežja, saj jo delno dobi od RV.
3.1 Model omrežja

Torej, če v enačbi (2.7) upoštevamo še moč RV:

\[\Delta U \approx \Delta U_d = \frac{R \cdot (P - P_{RV}) + X \cdot (Q - Q_{RV})}{U_2} \]

(2.8)

\(P_{RV} \) in \(Q_{RV} \) sta delovna in jalova moč RV. \(Q_{RV} \) ima pozitiven predznak, če jo RV porablja in negativen, če jo proizvaja.

Večina RV priklopljenih na NN omrežje injicirajo le delovno moč, ker je le ta merodajna za zaslužek, zato lahko \(Q_{RV} \) v enačbi zanemarimo. Poleg tega za bremena v NN omrežju velja, da je faktor delavnosti \(\cos \varphi > 0,95 \), zato lahko zanemarimo celoten člen z \(Q \). Vzemimo sedaj dva skrajna primera, ki se lahko pojavit v omrežju. V prvem primeru porabniki potrebujejo veliko delovne moči iz omrežja, RV pa v tistem trenutku ne proizvaja nič moči. Pri tem dobimo velik padec napetosti na koncu voda, ki lahko presega dovoljene meje. V drugem primeru je poraba v omrežju zelo nizka, RV pa proizvaja svojo nazivno moč. Zgodi se, da je \(P_{RV} > P \), zato se predznak v enačbi (2.8) obrne in dobimo na koncu voda višjo napetost kot na začetku [3].

Napetostni profil z in brez RV v NN omrežju prikazuje slika 2.3 [3].

![Slika 2.3: Napetostni profil v NN omrežju](image)

Na sliki vidimo en transformatorski izvod, ki ima 3 odcepe. Na vsakem odcepu je en porabnik, le na zadnjem je tudi RV. Na grafu sta prikazana oba zgoraj omenjena

Te težave bi lahko rešili z uporabo regulacijskih NN transformatorjev, ojačanjem omrežja, omejevanjem delovne moči razpršenih virov, s sodelovanjem RV pri regulaciji napetosti. Med naštetimi ukrepi je pri vključevanju RV v omrežje, glavni cilj uporaba obstoječe infrastrukture in aktivno upravljanje napetosti, za kar je potrebna komunikacija med RV in napravami v omrežju.
3 Analiza pretokov moči v omrežju

Za začetek moramo elektroenergetski sistem predstaviti z matematičnim modelom, ki bo dobro opisal obnašanje sistema. Matematični model je sistem enačb, ki predstavljajo delovanje vseh elementov sistema. Elektroenergetski sistemi so zelo obsežni in nelinearni, torej so tudi enačbe nelinearne. Pri teh analizah je zato potrebna uporaba numeričnih metod in računalnikov. Najbolj uporabljen metoda za reševanje nelinearnih enačb pri analizi pretokov moči je Newton-Raphsonova iteracijska metoda. Poleg te poznamo tudi Gaussovo in Gauss-Seidlovo metodo, ki se zaradi počasnosti v praksi ne uporablja in enosmerno oz. DC metodo, ki je zelo nenatančna [4].

3.1 Model omrežja

Za analizo pretokov moči se uporablja vozliščna metoda, ki temelji na tokovnem Kirchhoffovem zakonu. Pri vozliščni metodi velja, da je vsota vseh tokov
Analiza pretokov moči v omrežju

v vozlišču enaka nič. Ker se v EES vedno spremlja moč in ne tok, so v modelu namesto tokov prikazane moči. Zaradi uporabe vozliščne metode, so uporabljene admitance namesto impedanc. Poleg tega so v modelu vse količine v per-unit sistemu, da se izognemo različnim napetostnim nivojem.

Za nadaljnjo obravnavo si najprej poglejmo model omrežja z dvema vozliščema na sliki 3.1.

Vsako vozlišče ima svojo napetost \(U_i \) in \(U_j \) in pripadajoč kot napetosti \(\delta_i \) in \(\delta_j \). Vozlišči imata tudi injicirano moč \(S_i \), ki je razlika med generatorsko \(S_g \) in bremensko močjo \(S_b \) v vozlišču. Injicirani moči pripada tudi injiciran tok \(I \).

Za vozlišče \(i \) lahko napišemo enačbo tokov:

\[
I_i = I_{i0} + I_{ij}
\] (3.1)

Za tok \(I_{i0} \) in tok med vozlišči \(I_{ij} \) velja:

\[
I_{i0} = U_i \cdot Y_{i0}
\] (3.2)

\[
I_{ij} = (U_i - U_j) \cdot Y_{ij}
\] (3.3)

\(Y_{i0} \) je dozemna admitanca in \(Y_{ij} \) admitanca med vozliščem \(i \) in \(j \). Za vpeljavo moči v enačbe uporabimo:

\[
S_i = U_i \cdot I_i^*
\] (3.4)

Po združitvi enačb od (3.1) do (3.4) dobimo:
\[S_i = U_j \cdot (U_j \cdot y_{i0} + (U_j - U_j) \cdot y_{ij})^* \]
(3.5)

Admitanci lahko razdelimo na \(y_{i0} = g_{i0} + j b_{i0} \) in \(y_{ij} = g_{ij} + j b_{ij} \). Pri množenju napetosti upoštevamo, da je \(U_i \cdot U_j^* = U_i^2 \) in \(U_i \cdot U_j = U_i U_j \cdot (\cos \delta_{ij} - j \sin \delta_{ij}) \), kjer je \(\delta_{ij} = \delta_i - \delta_j \).

Po odpravljenih oklepajih in upoštevanih zgornjih pravilih dobimo realni in imaginarni del injicirane moči, ki ju lahko ločeno zapišemo kot:

\[P_i = P_{gi} - P_{bi} = U_i^2 \cdot (g_{ij} + g_{i0}) - U_i U_j \cdot (g_{ij} \cos \delta_{ij} - b_{ij} \sin \delta_{ij}) \]
(3.6)

\[Q_i = Q_{gi} - Q_{bi} = -U_i^2 \cdot (b_{ij} + b_{i0}) + U_i U_j \cdot (g_{ij} \sin \delta_{ij} + b_{ij} \cos \delta_{ij}) \]
(3.7)

Enako postopamo za določitev enačb v vozlišču \(j \) in tako dobimo še dve enačbi, \(P_j \) in \(Q_j \). Z vsoto moči \(S_i \) in \(S_j \) lahko določimo delovne in jalove izgube med vozliščema.

Za dokončno rešitev sistema štirih enačb, moramo opredeliti za kakšen tip vozlišča gre [5]. Možni tipi vozlišča so sledeči:

- **Bilančno vozlišče** je vozlišče, ki mu določimo amplitudo napetosti in kot napetosti. Običajno se amplitudo določi na \(U_i = 1 \) in kot \(\delta_i = 0 \). Neznanki v tem vozlišču sta injicirana delovna in jalova moč \(P_i \) in \(Q_i \), ki predstavljata izgube v omrežju.

- **PQ vozlišče** oz. tudi bremensko vozlišče ima znano delovno in jalovo moč bremena \(P_{bi} \) in \(Q_{bi} \). Neznanki v tem vozlišču sta amplituda napetost in pripadajoč kot.

- **PU vozlišče** oz. tudi generatorsko vozlišče, kjer je znana injicirana delovna moč \(P_{gi} \) in amplituda napetosti \(U_i \). Izračun pretokov moči da injicirano jalovo moč \(Q_{gi} \) in napetostni kot.

Elektroenergetski sistem ima ogromno število vozlišč, ki so med seboj povezana. To privede do tega, da na koncu dobimo tudi zelo veliko število enačb. Za njihovo oblikovanje je zato smiselna uporaba matrik in vektorjev. Matrika, ki vsebuje povezave med vozlišči in opisuje lastnosti sistema, je vozliščna admitančna matrika [1], [5]. Za določeno omrežje jo sestavimo z uporabo vozliščne metode, ki v matrični obliki izgleda:
Analiza pretokov moči v omrežju

\[
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_n
\end{bmatrix} = \begin{bmatrix}
Y_{11} & Y_{12} & \cdots & Y_{1n} \\
Y_{21} & Y_{22} & \cdots & Y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & \cdots & Y_{nn}
\end{bmatrix} \begin{bmatrix}
U_1 \\
U_2 \\
\vdots \\
U_n
\end{bmatrix}
\]

(3.8)

\[
I_j = Y U_j
\]

(3.9)

Vektor \(I_i\) so injicirani tokovi v vozlišče, \(U_j\) je vektor vozliščnih napetosti in \(Y\) je vozliščna admitančna matrika. Njeni diagonalni členi \(Y_{ii}\) so vsota vseh admitanc povezanih v i-to vozlišče, izvendiagonalni členi \(Y_{ij}\) in \(Y_{ji}\) pa so negativne vrednosti admitance med vozliščema \(y_{ij}\). V kolikor ne obstaja nobena povezava med vozliščema je ta člen enak nič. Pri podrobnejšem pregledu matrike, ugotovimo, da je simetrična vzdolž diagonale. Zato je dovolj, da poznamo le zgornji trikotni razcep matrike. V elektroenergetskih omrežjih je vsako vozlišče povezano le z nekaj bližnjimi vozlišči, kar pomeni, da je veliko izvendiagonalnih členov enako nič. Takim matrikam pravimo redke matrike. S pravilno obravnavo teh matrik lahko potrebne izračune zelo pohitrimo. Red admitančne matrike je enak številu vozlišč v omrežju.

Po upoštevanju admitančne matrike in dejstva, da je lahko vozlišče povezano z več kot enim vozliščem, lahko enačbi (3.6) in (3.7) zapišemo:

\[
P_i = U_i^2 \cdot G_{ii} - U_i \cdot \sum_{j=1 \atop j \neq i}^n U_j \cdot \left(G_{ij} \cos \delta_{ij} + B_{ij} \sin \delta_{ij} \right)
\]

(3.10)

\[
Q_i = -U_i^2 \cdot B_{ii} - U_i \cdot \sum_{j=1 \atop j \neq i}^n U_j \cdot \left(G_{ij} \sin \delta_{ij} - B_{ij} \cos \delta_{ij} \right)
\]

(3.11)

Te enačbe se uporabljajo za izračun pretokov moči v omrežju. Zaradi nelinearnosti enačb, je potrebno njihove rešitve najti z metodami za reševanje nelinearnih algebrajskih enačb.

3.2 Metode za izračun pretokov moči

Matematično gledano je izračun pretokov moči, nič drugega kot reševanje sistema nelinearnih algebrajskih enačb. Take sisteme enačb se najlažje rešuje z uporabo iterativnih metod. Pri tem je glavni kriterij zanesljiva konvergenca iteracijske metode. Z večanjem EES, se veča tudi število enačb v sistemu, zato ni
vsaka metoda pravilna izbira za reševanje sistema. Potrebna je uporaba takih metod, ki bodo dale dovolj natančne in hitre rešitve tudi za sisteme velikih dimenzij.

3.2.1 Gaussova in Gauss-Seidlova iteracijska metoda

Sledi razlaga obeh metod, čeprav se praktično ne uporabljata za izračun pretokov moči [1], [4]. Zaradi njune enostavnosti, lažje razumemo delovanje iterativnih metod za reševanje nelinearnih sistemov algebrajskih enačb. Pri Gaussovi metodi iz sistema enačb \(\mathbf{I} = \mathbf{Y} \mathbf{U} \) zapišemo vozliščno enačbo za \(i \)-to vozlišče:

\[
I_i = Y_{ii} \cdot U_i + \sum_{j \neq i} Y_{ij} \cdot U_j
\]

(3.12)

Enačbo (3.12) obrnemo, da dobimo napetost v vozlišču:

\[
U_i = \frac{1}{Y_{ii}} \left(I_i - \sum_{j \neq i} Y_{ij} \cdot U_j \right)
\]

(3.13)

Namesto injiciranega toka lahko uporabimo injicirano moč v vozlišče. Reševanje enačbe poteka simultano od prve napetosti do zadnje po korakih od prvega približka napetosti:

\[
U_i^{(k+1)} = \frac{1}{Y_{ii}} \left(\frac{P_i - jQ_i}{U_i^{(k)}} - \sum_{j \neq i} Y_{ij} \cdot U_j^{(k)} \right)
\]

(3.14)

Pred začetkom prve iteracije je potrebno določiti začetne vrednosti vseh vozliščnih napetosti, torej začetno vrednost vektorja \(\mathbf{U} \).

Gaussova metoda ima to pomanjkljivost, da počasi konvergira in ne konvergira vedno ob poljubni izbiri začetne vrednosti napetosti. Gaussovo metodo je izboljšal Seidel, zato tej metodi pravimo Gauss-Seidlova metoda. Le-ta v posamezni iteraciji uporabi novo rešitev takoj, ko je bila v isti iteraciji izračunana. Torej, pri računanju \(i \)-te napetosti, uporabimo že izračunane napetosti z indeksom do \(i-1 \).

Iteracijski postopek ima sledečo obliko:

\[
U_i^{(k+1)} = \frac{1}{Y_{ii}} \left(\frac{P_i - jQ_i}{U_i^{(k)}} - \sum_{j=1}^{i-1} Y_{ij} \cdot U_j^{(k)} - \sum_{j=i+1}^{n} Y_{ij} \cdot U_j^{(k+1)} \right)
\]

(3.15)
Analiza pretokov moči v omrežju

S tem postopkom se konvergenca sicer izboljša, vendar je tudi izboljšana metoda prepočasna za velike sisteme. Iteracijski postopek se zaključi, ko smo z iskano spremenljivko x, dosegli določeno natančnost ε:

$$|x^{(k+1)} - x^{(k)}| \leq \varepsilon$$ \hspace{1cm} (3.16)

3.2.2 Newton-Raphsonova iteracijska metoda

Spada med najučinkovitejše metode za reševanje nelinearnih algebrajskih enačb, zato je tudi najbolj razširjena. Njeni dobri lastnosti sta predvsem hitrost izračuna in to, da najmanjkrat divergira [5]. Najlažja razlaga Newton-Raphsonove metode je na enodimenzionalnem primeru:

$$f(x) = c$$ \hspace{1cm} (3.17)

Spremenljivko x lahko razdelimo na začetno oceno rešitve $x^{(0)}$ in na majhno odstopanje od prave vrednosti rešitve $\Delta x^{(0)}$:

$$f(x^{(0)} + \Delta x^{(0)}) = c$$ \hspace{1cm} (3.18)

Funkcijo f razvijemo v Taylorjevo vrsto okoli točke $x^{(0)}$:

$$f(x^{(0)}) + \left(\frac{df}{dx}\right)^{(0)} x^{(0)} + \frac{1}{2!} \left(\frac{d^2f}{dx^2}\right)^{(0)} (\Delta x^{(0)})^2 + \cdots = c$$ \hspace{1cm} (3.19)

Ob upoštevanju predpostavke, da je napaka $\Delta x^{(0)}$ zelo majhna, lahko višje člene Taylorjeve vrste zanemarimo in dobimo:

$$\Delta c^{(0)} = c - f(x^{(0)})$$ \hspace{1cm} (3.20)

In velja

$$\Delta c^{(0)} = \left(\frac{df}{dx}\right)^{(0)} \Delta x^{(0)}$$ \hspace{1cm} (3.21)

Pri upoštevanju enačbe (3.21) je aproksimacija rešitve v naslednji iteraciji:

$$x^{(1)} = x^{(0)} + \frac{\Delta c^{(0)}}{\left(\frac{df}{dx}\right)^{(0)}}$$ \hspace{1cm} (3.22)

V bolj splošni obliki lahko enačbo (3.21) zapišemo:
3.2 Metode za izračun pretokov moči

\[\Delta c^{(k)} = j^{(k)} \Delta x^{(k)} \] \hspace{1cm} (3.23)

\[j^{(k)} = \left(\frac{df}{dx} \right)^{(k)} \] \hspace{1cm} (3.24)

Kot vidimo, Newton-Raphsonova metoda nelinearno enačbo aproksimira s tangento na krivulji v točki \(x^{(0)} \), ki jo zapišemo z linearno enačbo za majhne spremembe \(\Delta x^{(k)} \). Presečišče tangente z abscisno osjo je rešitev \(x^{(k+1)} \).

Za izračun pretokov moči z Newton-Raphsonovo metodo se uporablja izpeljani enačbi (3.10) in (3.11), ki ju lahko zaradi enostavnejše obravnave zapišemo v obliki [1]:

\[P_i = P_{gi} - P_{bi} = -\sum_{j=1}^{n} U_i U_j \cdot (G_{ij} \cos(\delta_i - \delta_j) + B_{ij} \sin(\delta_i - \delta_j)) \] \hspace{1cm} (3.25)

\[Q_i = Q_{gi} - Q_{bi} = -\sum_{j=1}^{n} U_i U_j \cdot (G_{ij} \sin(\delta_i - \delta_j) - B_{ij} \cos(\delta_i - \delta_j)) \] \hspace{1cm} (3.26)

Pri tej obliki enačb so neznanke vozliščne napetosti \(U_i \) in pripadajoči koti \(\delta_i \). Pri PV vozliščih ne poznamo jalove moči, zato v iteracijskem postopku pri teh vozliščih ni enačbe za jalovo moč. Podobno velja za bilančno vozlišče, ki ima definirano napetost in njen kot. Tako da tudi enačbi \(P_i \) in \(Q_i \), za bilančno vozlišče, ne nastopata v iteracijah. Če je vseh vozlišč \(n \) in je \(r \) število PV vozlišč, imamo \(n - l \) enačb za delovno moč in \(n - r - l \) enačb za jalovo moč. Torej je vseh enačb \(2n - r - 2 \). V celotnem omrežju imamo samo en definiran kot, zato je število neznanih kotov \(\delta_i \) enako \(n - l \), število neznanih napetosti \(U_i \) pa je za \(n - r - l \) manjše, torej \(n - r - l \). Tako je vseh neznank v sistemu tudi \(2n - r - 2 \). Vidimo, da je sistem rešljiv, saj imamo enako število enačb kot neznank. Jalove moči in kote generatorskih vozlišč in moč bilančnega vozlišča se izračuna po končnih iteracijah, ko poznamo vse napetosti in kote [7].

Eqačbi (3.25) in (3.26), za delovno in jalovo moč, v vektorski obliki najprej razvijemo v Taylorjevo vrsto okoli izbrane začetne vrednosti in zanemarimo višje čele vrste [1]. Eqačbe spremembe moči so:

\[\Delta P = \frac{\partial P}{\partial U} \Delta U + \frac{\partial P}{\partial \delta} \Delta \delta \] \hspace{1cm} (3.27)

\[\Delta Q = \frac{\partial Q}{\partial U} \Delta U + \frac{\partial Q}{\partial \delta} \Delta \delta \] \hspace{1cm} (3.28)

Pri vsaki iteraciji izračunamo spremembe moči:
Analiza pretokov moči v omrežju

\[
\Delta P_i^{(k)} = P_{gi} - P_{bi} - P_i^{(k)} \quad (3.29)
\]

\[
\Delta Q_i^{(k)} = Q_{gi} - Q_{bi} - Q_i^{(k)} \quad (3.30)
\]

Enačbi (3.27) in (3.28) zapišemo v matrični obliki:

\[
J \Delta x = J \begin{bmatrix} \Delta \delta \\ \Delta U \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} \quad (3.31)
\]

J so Jacobijeve matrike, ki so urejene:

\[
J = \begin{bmatrix}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial U} \\
\frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial U}
\end{bmatrix} \quad (3.32)
\]

Končen zapis neznank, ki jih iščemo z inverzom Jakobijeve matrike, je:

\[
\Delta x = \begin{bmatrix} \Delta \delta \\ \Delta U \end{bmatrix} = J^{-1} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} \quad (3.33)
\]

Iteracijski postopek se izvede po sledeči formuli:

\[
x^{(k+1)} = x^{(k)} + \Delta x^{(k)} \quad (3.34)
\]

Iteracije ustavimo, ko je dosežena željena natančnost rezultata \(\varepsilon\):

\[
\left| \Delta P_i^{(k)} \right| \leq \varepsilon_P \quad (3.35)
\]

\[
\left| \Delta Q_i^{(k)} \right| \leq \varepsilon_Q \quad (3.36)
\]

Najtežji del izračuna je invertiranje Jakobijeve matrike, ker ima pri velikem številu vozlišč veliko dimenzijo. Jacobijeva matrika je zaradi že omenjene admitančne matrike tudi redka. Za pohitritev izračuna se uporablja različne metode za oblikovanje trikotne matrike, kjer so vsi členi nad ali pod diagonalo matrike različni od nič. Ena od teh metod je Gaussova eliminacijska metoda [1].

Za lažje razumevanje postopka izračuna pretokov moči z Newton-Raphsonovo metodo, je na sliki 3.2 shematičen prikaz postopka [6].
3.2 Metode za izračun pretokov moči

Slika 3.2: Shema izračuna z Newton-Raphsonovo metodo

3.2.3 Razklopljena in hitra razklopljena metoda

Razklopljena metoda je v bistvu Newton-Raphsonova metoda, ki upošteva določene poenostavitve. V prenosnem omrežju je razmerje med upornostjo voda R_{ij} in njegovo reaktanco X_{ij} zelo majhno, torej $X_{ij} \gg R_{ij}$, zato je prenesena delovna moč zelo malo odvisna od napetosti in prenesena jalova moč zelo malo odvisna od kota. Zato lahko člene s parcialnimi odvodi P_i po U_i in Q_i po δ_i zanemarimo in Jacobijevu matriko (3.34) zapišemo:

$$J = \begin{bmatrix} \frac{\partial P}{\partial \delta} & 0 \\ 0 & \frac{\partial Q}{\partial U} \end{bmatrix}$$ (3.37)

Z upoštevanjem te poenostavitve smo zmanjšali dimenzije matrike ter tako skrajšali čas računanja. Konvergenca se pri tem sicer poslabša, vendar jo lahko
izboljšamo z uporabo že izračunanih spremenljivk v tekoči iteraciji, podobno kot pri Gauss-Seidlovi metodi.

Z uvedbo dodatnih poenostavitev je nastala tudi hitra razklopljena metoda. Tu se upošteva, da je razlika kotov δ_{ij} med vozliščema v normalnem obratovanju majhna, zato je kosinusna funkcija enaka približno ena, da je G_{ij} približno enak nič in da je napetost U_j enaka ena $[1]$. Zato so členi Jakobijeve matrike enaki:

$$\frac{\partial P_i}{\partial \delta_i} = U_i \sum_{j=1}^{n} B_{ij} = U_i \cdot B'_{ii} \tag{3.38}$$

$$\frac{\partial P_j}{\partial \delta_j} = U_i \cdot B_{ij} = U_i \cdot B'_{ij} \tag{3.39}$$

B'_{ii} je seštevek vseh susceptanc povezanih v i-to vozlišče. Enako lahko naredimo za jalovo moč, kjer dobimo B''_{ii} in B''_{ij}. Te susceptance lahko zapišemo v matriko B' in B'' in določimo spremembe spremenljivk za iteracijski postopek:

$$\Delta \delta^{(k+1)} = (B')^{-1} \left[\frac{\Delta P_i}{U_i} \right]^{(k)} \tag{3.40}$$

$$\Delta U^{(k+1)} = (B'')^{-1} \left[\frac{\Delta Q_j}{U_i} \right]^{(k)} \tag{3.41}$$

Ostali postopek je enak kot pri razklopljeni metodi.

4 Načrtovanje distribucijskega omrežja

Naloga distribucijskega omrežja je razdeljevanje električne energije do končnih porabnikov. Napaja se iz prenosnega omrežja, kjer so priklopljeni glavni viri električne energije, torej elektrarne velikih moči. Sestavljajo ga RTP-ji, kjer transformatorji znižajo napetost iz 110 kV na srednjo napetost. Na RTP so priključeni SN vodi, ki prenesejo energijo do centrov porabe, torej do mest, vasi in industrijskih con. Na SN vodih so po celotni dolžini razporejene transformatorske postaje, v katerih so distribucijski transformatorji, ki so potrebni za transformacijo srednje napetosti na nizko. Zadnji člen te verige so NN vodi, ki povezujejo porabnike do TP [12].

To bo oz. že vpliva predvsem na distribucijsko omrežje, ki se zato veliko hitreje razvija in širi. Za optimalen razvoj je potrebno premišljeno in pravilno načrtovanje distribucijskega omrežja. Glavni cilj načrtovanja razvoja omrežja je vzdrževati kakovost dobavljene električne energije, kljub večanju porabe in obremenitev, z najmanjšimi možnimi stroški. Pri načrtovanju razvoja upoštevamo več kriterijev, kot so tehnični, ekonomski in kriterij zadostnosti napajanja.

4.1 Kriteriji načrtovanja razvoja SN omrežja

4.1.1 Kriteriji za ocenjevanje zanesljivosti napajanja porabnikov
Okvare v EES so naključne in pripeljejo do stanja, ko ne moremo napajati vseh porabnikov v omrežju. S pojmom zanesljivost sistema označujemo pogostost in trajanje takih stanj. Največ prekinitev je v srednjenapotestnem omrežju na nadzemnih vodih [8]. Glede na to, da so distribucijska omrežja radialna, pride ob vsaki okvari do prekinitev napajanja. Trajanje prekinitev se da zmanjšati z možnostjo rezervnega napajanja za vse porabnike in z avtomatsko rekonfiguracijo omrežja. Poznamo načrtovane in naključne prekinitve. Naključne prekinitve delimo na kratkotrajne, ki trajajo do 3 minute in jih povzročijo prehodne okvare ter na dolgotrajne, ki so daljše od 3 minut in jih povzročijo trajne okvare. Za ovrednotenje dolgotrajnih naključnih prekinitev poznamo 2 parametra, in sicer SAIDI, ki pove povprečno trajanje prekinitve na porabnika v določenem časovnem obdobju in SAIFI, ki pove število prekinitev na porabnika v določenem časovnem obdobju [10].

4.1.2 Kriteriji tehničnega vrednotenja

Obremenjevanje transformatorjev 110 kV/SN
Transformatorji so lahko trajno obremenjeni s svojo nazivno močjo. V primeru, da transformator obratuje pod svojo nazivno močjo, ga lahko za nekaj ur obremenimo z večjo močjo od nazivne. Nazivni podatki veljajo pri okoliški temperaturi 20 °C, zato je pri tej temperaturi v stanju rezervnega napajanja dovoljena kratkotrajna obremenitev 120 % nazivne moči. Zaradi spreminjanja zunanje temperature, v načrtovanju upoštevamo obremenjevanje transformatorjev po spodnji tabeli [8].

Tabela 4.1: Dovoljeno trajno in kratkotrajno obremenjevanje transformatorjev

<table>
<thead>
<tr>
<th></th>
<th>Temperatura zraka</th>
<th>Trajna obremenitev</th>
<th>Kratkotrajna obremenitev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zima</td>
<td><10 °C</td>
<td>110 % Sn</td>
<td>130 % Sn</td>
</tr>
<tr>
<td>Pomlad/jesen</td>
<td>20 °C</td>
<td>100 % Sn</td>
<td>120 % Sn</td>
</tr>
<tr>
<td>Poletje</td>
<td>30 °C</td>
<td>90 % Sn</td>
<td>110 % Sn</td>
</tr>
</tbody>
</table>

preostali transformatorji v RTP-ju in na nesamostojno, kjer del izpada ali celoten izpad pokrijemo iz drugega RTP-ja po SN omrežju. Običajno v razvoju omrežja velja, da so RTP-ji med seboj povezani s SN vodi za pokrivanje rezerve. Pri tem upoštevamo, da lahko RTP-je, ki pokrivajo rezervo obremenimo le do nazivne moči, RTP, kjer se je izpad zgodil, pa lahko obremenimo do 120 °C nazivne moči.

RTP-ji s tremi transformatorji običajno obratujejo samostojno, kjer pri izpadu enega transformatorja ostala dva zagotavljata rezervo. Dovoljena obremenitev v rezervnih stanjih je 120 °C nazivne, torej pri dveh obratvočih transformatorjih je največja obremenitev RTP-ja 240 °C. Zato lahko v normalnem obratovanju obremenimo transformatorje z 80 °C nazivne moči.

RTP-ji z dvema transformatorjema lahko obratujejo samostojno ali nesamostojno. Pri nesamostojnem obratovanju v normalnem stanju lahko obremenimo transformatorja do 80 °C nazivne moči. Ob morebitnem izpadu enega, obremenimo drugega do 120 °C, ostalo rezervo zagotovimo iz sosednjih RTP-jev. Pri samostojnem obratovanju lahko transformatorja obremenimo do največ 60 °C nazivne moči, da ob izpadu lahko drugi pokrije vseh 60 °C [8], [9], [10].

Dopustno obremenjevanje SN vodov
Obremenitve SN vodov so pogojene z njihovo termično mejo. Dopustna termična meja za nadzemne vode je 80 °C, vendar je potrebno pri načrtovanju upoštevati tudi vremenske pogoje. Obremenitve omejujejo tudi povesi vodnikov, zato se pri načrtovanju omejimo na poletne termične meje vodnikov.

Termično obremenitev vodnikov dopuščamo samo v primeru rezervnega napajanja, saj imamo pri tej obremenitvi velike izgube, ki pa v rezervnem napajanju niso toliko pomembne, če padci napetosti to dopuščajo. V normalnih stanjih je zaradi izgub dopustna obremenitev nadzemnih vodov 50 °C termične moči.

Za kabelska omrežja, ki so grajena v obliki odprih zank, velja, da v normalnih stanjih obremenitev ne preseže 50 °C termične obremenitve, zaradi zagotavljanja rezerve. Pri kabelskih omrežjih s posebnimi rezervnimi kabli je dovoljeno obratovanje do 75 °C moči, zaradi izgub.
Dopustni padci napetosti

Temeljni kriterij načrtovanja predstavljajo dopustni padci napetosti. Pravilno določanje padcev napetosti zagotavlja pri porabnikih napetost v predpisanih mejah. V SN omrežju lahko dopuščamo takšne padce napetosti, kolikor jih lahko kompenziramo z odcepi na SN/NN transformatorju. Tako kompenzacijo lahko uporabimo le z ustreznim nastavljanjem regulacije releja 110 kV/SN transformatorja za samodejno regulacijo napetosti na SN zbiralkah. Ta deluje tako, da dvigne napetost, ko se poveča obremenitev transformatorja in zniža napetost, ko se obremenitev zmanjša ter vzdržuje napetost na koncu SN voda konstantno.

Pomembno je, da se napetost zniža ponoči, ko so transformatorji najmanj obremenjeni, da ne pride pri porabnikih do previsokih napetosti. Pri načrtovanju velja, da je v normalnih obratovalnih stanjih dopustni padec napetosti 7,5 %, v rezervnih pa je lahko za 5 % višji, vendar ne več kot 12,5 % [8], [10].

4.1.3 Kriteriji ekonomskega vrednotenja

Ko zadostimo vsem tehničnim kriterijem, je na vrsti ekonomska ocena načrtovanih variant, ki jo spremljajo stroški in prihranki ob različnih časovnih obdobjih. Za pravilno ekonomsko obravnavo je najpomembnejše, da primerjamo aktualizirane vrednosti stroškov in prihrankov. Med stroške spadajo investicijski stroški, ki se nanašajo na izgradnjo novih naprav, stroški vzdrževanja, ki so določeni kot odstotek od investicijske vrednosti naprave in stroški izgub. Stroške izgub lahko delimo še na napetostne in tokovne. Pri načrtovanju se upošteva le tokovne izgube, ker so večje kot napetostne in ker lahko nanje največ vplivamo, [8]. Letne stroške tokovnih izgub lahko določimo s poznavanjem letne konične moči izgub in letno izgubno energijo.

Na investicijske stroške se nanašajo tudi stroški prekinitev napajanja. Pri večjih investicijskih stroških se zmanjša število in trajanje prekinitev, kar neposredno vpliva na stroške prekinitev napajanja, ki so vezani izpadlo moč, nedobavljeno energijo in morebitne odškodnine.
4.2 Kriteriji načrtovanja NN omrežja

4.2.1 Referenčna impedanca

Referenčna impedanca je impedanca faznega in nevtralnega vodnika od TP do vtičnice pri porabniku. Omejitev referenčne impedance je namenjena zagotavljanju ustrezne kakovosti napetosti pri uporabniku. Je enofazna in je omejena na:

\[Z_{ref} = (0,4 + j0,25)\Omega \] (4.1)

Z imaginarnim delom smo omejeni, zato moramo za gradnjo NN omrežja uporabljati kable, ker imajo reaktanco manjšo od 0,1 Ω/km, zato lahko pri načrtovanju zanemarimo imaginarni del referenčne impedance. Poleg tega je zanemarljiva tudi impedanca SN omrežja in transformatorja SN/NN.

Upornost faznega in nevtralnega vodnika je enaka, zato pri načrtovanju upoštevamo kriterij omejitve upornost faznega vodnika, in sicer, skupna omska upornost faznega vodnika od TP do prevzemno merilnega mesta najbolj oddaljenega odjemalca ne sme presegati 0,2 Ω.

Če se zgodi, da se prevzemno merilno mesto ne nahaja na samem objektu, upornost faznega vodnika dovoda ne sme presegati 0,05 Ω. Dowod je povezava med prevzemno merilnim mestom in inštalacijo objekta. V tem primeru je skupna omska upornost faznega vodnika od TP do prevzemno merilnega mesta omejena na 0,15 Ω.

Ob upoštevanju zgornjih omejitvev, lahko določimo največje dolžine tipskih aluminijastih kablov, ki se uporabljajo pri gradnji NN omrežja [11].

<table>
<thead>
<tr>
<th>Prerez vodnikov mm(^2)</th>
<th>Upornost vodnikov Ω/km</th>
<th>Največja dolžina voda m</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1,00</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>0,50</td>
<td>300</td>
</tr>
<tr>
<td>150</td>
<td>0,24</td>
<td>625</td>
</tr>
<tr>
<td>240</td>
<td>0,15</td>
<td>1000</td>
</tr>
</tbody>
</table>
Pri izračunu največje dolžine vodov se upošteva največja upornost do prevzemno priključnega mesta 0,15 \(\Omega \), da ostane na razpolago še 0,05 \(\Omega \) za dovod.

Največja dolžina voda je osnovni pogoj, ki mora biti izpolnjen ne glede na obremenitve in padce napetosti. Mejni padci napetosti lahko še dodatno vplivajo na omejitve dolžine.

4.2.2 Mejni padci napetosti

Pri obratovanju NN omrežja ne smejo padci napetosti nikoli preseči meje 10 \%. Pri načrtovanju novih NN omrežij velja mejni dopustni padec napetosti 5 \%. Pri tej meji zagotovimo nekaj prostora za povečanje obremenitev na dolgi rok. Zavedamo se, da bo pri današnjem prehajanju ogrevanja in prometa na električno energijo, bo prišlo nekaj več prostora pri padcij napetosti še kako prav.

Pri že obratujčih NN omrežjih so dopustni padci napetosti 7,5 \%. Ko je ta meja presežena, je potrebno omrežje ojačati. Tudi pri širitvi obstoječega NN omrežja velja mejni padec napetosti 7,5 \% [11].

4.2.3 Računske obremenitve NN vodov

Zaradi različnega načina odjema, delimo odjemalce v NN omrežju na gospodinjski odjem individualne gradnje (GOI) in blokovne gradnje (GOB), velik gospodinjski odjem nad 3\(x\)25 A (GOV), velik ostali odjem nad 3\(x\)25 A (OOV) in mali ostali odjem, enofazni ali trifazni do vključno 3\(x\)25 A (OOM). Pri načrtovanju NN omrežij za vsako skupino odjema upoštevamo drugačne obremenitve.

Pri gospodinjskem odjemu obremenitev večinoma zelo odstopa od konične moči, zato upoštevamo faktor prekrivanja za \(n\) odjemalcev po sledeči enačbi:

\[
F_{pn} = F_{p\infty} + \frac{1 - F_{p\infty}}{\sqrt{n}}
\]

(4.2)

\(F_{p\infty}\) je faktor prekrivanja neskončnega števila odjemalcev.

Pri načrtovanju omrežja z GOI upoštevamo obremenitev 10 kW za posamično gospodinjstvo. V kolikor je gospodinjstev v omrežju \(n\), izračunamo faktor prekrivanja in ga množimo z obremenitvijo posamičnega gospodinjstva. Torej za 100 GOI je upošteva obremenitev 300 kW. Za vsakega naslednjega odjemalca nad 100 GOI, se vzame obremenitev 3 kW. Podobno velja tudi pri GOB, le da je obremenitev posamičnega odjemalca 5 kW. Torej bo za 100 stanovanj obremenitev 150 kW, za
vsakega naslednjega nad 100 pa 1,5 kW. OOM pa obravnavamo, kot je en GOI ali 2 GOB.

Za GOV in OOV velja, da jih obravnavamo individualno, in sicer njihovo konično moč množimo s faktorjem prekrivanja 0,8. V primeru mešanega naselja z individualnimi hišami in bloki na istem vodu delimo število stanovanj z 2 in upoštevamo vrednosti individualne gradnje.

Čedalje več gospodinjstev se zaradi energetske politike odloča za zamenjavo ogrevanja s toplotnimi črpalkami, zato je pri načrtovanju obremenitve posamičnega gospodinjstva v individualne gradnje že upoštevano dejstvo, da računske obremenitve omogočajo priključitev do približno 50% toplotnih črpalk. V kolikor bi imeli informacijo, da bo novo naselje ogrevano samo s toplotnimi črpalkami, moramo pri izračunu celotno število gospodinjskih odjemalcev množiti z 2 [11].

4.2.4 Dimenzioniranje transformatorjev SN/NN

<table>
<thead>
<tr>
<th>Nazivna moč TR SN/NN kVA</th>
<th>Največje število odjemalcev na TP GOI</th>
<th>Največje število odjemalcev na TP GOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>44</td>
</tr>
<tr>
<td>160</td>
<td>33</td>
<td>77</td>
</tr>
<tr>
<td>250</td>
<td>55</td>
<td>125</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>630</td>
<td>150</td>
<td>315</td>
</tr>
<tr>
<td>1000</td>
<td>240</td>
<td>500</td>
</tr>
</tbody>
</table>
5 Programski paket Gredos

Z razvojem programske opreme za analizo NN, SN in VN omrežij se pri nas ukvarjajo na Elektroinštitutu Milan Vidmar. V sklopu projekta Razvoj elektro distribucijskega omrežja Slovenije (REDOS) je bilo zasnovano glavno orodje za načrtovanje in analizo omrežja, in sicer program Gredos. Sprva je bil program namenjen za analizo SN omrežja, kasneje so ga nadgradili tudi za analizo NN in VN omrežja. Program uporabljajo vsa Slovenska distribucijska podjetja, ki so v njem zmodelirala praktično celotno SN omrežje [13].

Program Gredos je povezan s programom MS Access, v katerem so shranjeni topološki podatki omrežja. Torej je celotna baza podatkov shranjena v datoteki MDB. Vhodne podatke lahko spreminjamo neposredno v Gredosu. V primeru, da je potrebno spremeniti večjo količino podatkov, lahko te spremenimo v datoteki MDB,
pred zagonom Gredosa. Enako velja za izhodne podatke, ki jih lahko po izračunu preverimo v Gredosu za vsak element posebej ali pa izvozimo podatke v datoteki dbf in xml.

V diplomskem delu je narejena analiza vpliva razpršenih virov na napetosti v SN omrežju za stacionarno obratovanje v Gredosu in analiza s poenostavljenim dinamičnim modelom omrežja v programu Matlab-Simulink, za prehodno obratvalno stanje [16]. Rezultati so potrdili domneve, da so odstopanja napetosti pri hitrih spremembah moči večja kot v primeru počasnih sprememb in jih zato ne bi smeli zanemariti.

6 Model NN omrežja in izračun napetostnih razmer

6.1 Model

Delovanje Gredosa lahko pogledamo na sledečem primeru. Na dolgem SN vodu je bila izbrana TP, ki napaja 31 gospodinjskih odjemalcev individualne gradnje. V Gredosu je že narejen model SN omrežja z vsemi TP. Zaradi številčnosti, NN omrežja niso modelirana, zato smo morali najprej narediti model izbranega omrežja. Podatki za izdelavo modela v Gredosu so iz prostorskega informacijskega sistema distribucijskega podjetja. Za lažjo razporeditev elementov smo v Gredos prenesli shemo parcel, da je model na videz podoben realnemu stanju. Najprej je bilo potrebno v TP narediti NN zbiralko in jo preko transformatorja povezati na SN vod. Nato je sledilo dodajanje vozlišč in povezovanje le – teh. Temu je sledilo določanje lastnosti elementov. Podatki, ki smo jih dobili iz informacijskega sistema, so nazivna moč distribucijskega transformatorja, dolžine, preseki in tipi kablov, ki so uporabljeni pri gradnji tega omrežja in konična moč porabnikov, torej podatek o glavnih varovalkah. Moč NN transformatorja je 100 kVA. Ima pet izvodov z nadzemnim kablom preseka 70 mm². Poleg tega so v modelu uporabljeni tudi kabli s presekom 35 mm², 16 mm² in 6 mm², predvsem za dovode do posameznih odjemalcev. Na sliki 6.1 je prikazan model v Gredosu, ki prostorsko sovпадa s shemo omrežja iz prostorskega informacijskega sistema [15].
Na sliki vidimo geografsko razporeditev 31 odjemalcev, ki so označeni z modrimi vozlišči. Rdeča vozlišča predstavljajo točke, kjer se kabel odcepi ali se spremeni njegov presek. Rdeče povezave so NN kabli, zelena povezava pa je SN vod. Večina odjemalcev ima največjo inštalirano moč 17,3 kW. Izjema so odjemalci P11, P28 in P29, ki imajo moč 13,8 kW, odjemalca P20 in P21 z 11,1 kW in 4,6 kW, odjemalca P25 in P30 s 5,8 kW in odjemalca P22 s 34,6 kW. Pri vseh odjemalcih, razen pri P21 in P22, je diagram moči porabe ekvivalenten gospodinjskemu odjemu, kot prikazuje sloka 6.2. Značilna sta jutranja in večerna konica. Odjemalci P22 je kmetija, odjemalci P21 pa razsvetljava igrišča, zato njuna poraba ni enaka ostalim.

Slika 6.1: Model NN omrežja v Gredosu

Slika 6.2: Primer dnevnega diagrama porabe gospodinjskih odjemalcev
6.2 Predpostavke pri izračunu

Za opisani model NN omrežja smo analizirali vpliv domačih polnilnic za električne avtomobile, toplotnih črpalk in sončnih elektrarn za samooskrbo z električno energijo v različnih obratovalnih točkah. Analizirali smo, kako te obremenitve vplivajo na omrežje posamezno in v kombinaciji. Privzete obremenitve so konstantne in brez prilagajanja obremenitvi omrežja, saj smo želeli preveriti razmere v najslabšem možnem primeru, ki se lahko zgodi. Obremenitve smo določili na podlagi meritev, ponudbe trga in dopuščanja zakonodaje.

6.2.1 Moč domače električne polnilnice

Smernice evropskih direktiv so prehod prometa na električno energijo. Pri tem se bomo soočili s porastom števila električnih avtomobilov, posledično pa tudi s povečano porabo električne energije. Zaradi tega se že vzpostavlja mreža javnih električnih polnilnic, ki omogoča polnjenje električnih avtomobilov na javnih parkirnih mestih. Poleg tega bo vsak, ki bo kupil električni avtomobil, želel le tega polniti tudi doma. Moči domačih polnilnic so različne glede na varovalce v gospodinjstvih in se gibljejo med 3,7 kW in 22 kW. Nekatere polnilnice imajo tudi možnost prilagajanja moči polnjenja glede na obremenjenost omrežja.

Večina električnih avtomobilov na trgu ima kapaciteto baterije okoli 28 kWh [18]. Torej pri moči 3,7 kW bi se baterija popolnoma napolnila v manj kot osmih urah. Polnilnico s tako močjo priklopimo na omrežje enofazno, preko vtičnice z varovalko 1x16 A. Na podlagi teh ugotovitev predvidevamo, da bojo polnilnice s tako močjo najbolj pogoste pri gospodinjskih odjemalcih, zato smo se pri naši analizi odločili uporabiti moč polnilnice 3,7 kW.

6.2.2 Moč toplotne črpalke

V zadnjih letih se je zaradi ekonomičnosti in finančnih spodbud število toplotnih črpalk v omrežju zelo povečalo in se še povečuje. Toplota črpalka deluje tako, da viru odvzame toploto, jo prenese in odda drugemu mediju. Pri prenosu toplote pomaže z električnim kompresorjem, ki s povečanjem tlaka dvigne temperaturo odvzete toplote. Za vir toplote lahko uporabimo okoliški zrak, površinske ali podzemne vode in energijo v plasteh zemlje. Tako s toplotno črpalko

Za določitev moči toplotne črpalke, smo si pomagali s porabo treh gospodinjskih odjemalcev s toplotno črpalko. Porabo smo pogledali za najhladnejše dni v letu 2017, ki so bili zabeleženi med 8.1.2017 in 11.1.2017 [21]. Predvsem smo se osredotočili na ure med 0.00 in 6.00, ko je poraba gospodinjstev najmanjša. V primeru nizkih temperatur je opaziti zelo veliko porabo tudi v opazovanih urah, saj je toplotna črpalka neprestano vklopljena. Porabo treh odjemalcev prikazuje slika 6.3.

![Poraba gospodinjstev v nočnih urah zaradi toplotnih črpal](image)

Slika 6.3: Poraba gospodinjstev v nočnih urah zaradi toplotnih črpal

V nočnih urah do 4.00 je bila maksimalna moč odjemalcev 2 in 3 enaka 2 kW, pri odjemalcu 1 pa nekaj več kot 1,5 kW. Glede na to, da je poraba teh odjemalcev v
nočnih urah v toplejših mesecih, ko toplotna črpalka ne obratuje, okoli 100 W, smo
porabo ostalih naprav zanemarili. Na podlagi ugotovljenega smo se odločili, da pri
analizi upoštevamo moč posamezne toplotne črpalke 2 kW.

6.2.3 Moč sončne elektrarne

Poraba električne energije v svetu narašča, zato morajo proizvodni viri slediti
tej porabi. Če želimo zadostiti temu pogoju, moramo graditi nove vire električne
energije. Teži se k temu, da bi na dolgi rok današnje koncentrirane konvencionalne
vire zamenjali z razpršenimi alternativnimi viri. Z namenom pospeševanja razvoja
razpršenih virov, je v Sloveniji stopila v veljavo Uredba o samooskrbi z električno
energijo iz obnovljenih virov energije. Uredba omogoča, da se lastniku RV zaračuna
le razlika med porabljeno električno energijo in proizvedeno električno energijo iz
RV.

V uredbi je nazivna navidezna moč RV omejena na 11 kVA [22]. Na podlagi
tega, smo se odločili pri analizi upoštevati največjo moč sončne elektrarne 10 kW.
Ker smo analizirali stanje omrežja v skrajnih obratovalnih točkah, smo privzeli, da
sončne elektrarne obratujejo s faktorjem delavnosti \(\cos \phi = 1 \), torej ne sodelujejo pri
regulaciji napetosti z jalovo močjo. Pri analizi je bila uporabljena moč 10 kW le za
poletne mesece. Pri analizi v zimskem času smo si za določitev maksimalne moči
sončne elektrarne pomagali s podatki ene sončne elektrarne na območju opazovanega
omrežja. Urne vrednosti na dan, ko je bila zabeležena maksimalna moč poleti in
pozimi, prikazuje slika 6.4. Maksimalna izmerjena moč poleti je bila 558,2 kW,
pozimi pa 350,7 kW. Torej je bila moč pozimi le 62,8 % moči poleti. Zato smo pri
analizi v zimskih obratovalnih stanjih uporabili moč sončne elektrarne 6,5 kW.
6.2.4 Dopustni padci napetosti

Napetosti v distribucijem omrežju se lahko v normalnih obratovalnih stanjih po standardu SIST EN 50160 gibljejo med ± 10 % nazivne vrednosti. Pri hitrih napetostnih spremembah pa se napetost ne sme spremeniti za več kot ± 5 % nazivne vrednosti. Poleg tega so lahko padci napetosti dodatno omejeni, da imamo pri normalnem obratovanju nekaj rezerve in ne presežemo vrednosti v standardu.

Na primer, v doktorski disertaciji o koordinirani regulaciji napetosti v distribucijem omrežju z razpršeno proizvodnjo ob različnih kriterijih jalove moči, so pri analizi upoštevali maksimalno odstopanje napetosti ± 5 % nazivne vrednosti [23].

V kriterijih načrtovanja NN omrežja velja, da je za novo NN omrežje maksimalen dopustni padec napetosti 5 % nazivne vrednosti. Pri obstoječem omrežju ne sme biti padec napetosti večji kot 7,5 %. V kolikor je ta meja presežena, je potrebno omrežje ojačiti.

Analizo omrežja smo delali na modelu realnega obstoječega omrežja, zato smo za največji dopustni padec napetosti izbrali 7,5 %. Pri dvigu napetosti pa smo upoštevali mejo 5 % nazivne vrednosti.
6.3 Izračun napetostnih razmer

Pri analizah smo potrebovali podatke o porabi vseh odjemalcev. Iz informacijskega sistema smo dobili petnajstminutne povprečne vrednosti moči vsakega odjemalca za leto 2017. Torej analiza temelji le na podatkih iz tega leta.

6.3.1 Analiza vpliva električnih polnilnic

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstoječe stanje (Moč [kW])</th>
<th>8 polnilnic (Moč [kW])</th>
<th>16 polnilnic (Moč [kW])</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>7,252</td>
<td>7,252</td>
<td>7,252</td>
</tr>
<tr>
<td>P2</td>
<td>0,448</td>
<td>0,448</td>
<td>0,448</td>
</tr>
<tr>
<td>P3</td>
<td>0,240</td>
<td>0,240</td>
<td>0,240</td>
</tr>
<tr>
<td>P4</td>
<td>7,120</td>
<td>7,120</td>
<td>7,120</td>
</tr>
<tr>
<td>P5</td>
<td>0,140</td>
<td>0,140</td>
<td>0,140</td>
</tr>
<tr>
<td>P6</td>
<td>0,304</td>
<td>0,304</td>
<td>0,304</td>
</tr>
<tr>
<td>P7</td>
<td>2,340</td>
<td>2,340</td>
<td>2,340</td>
</tr>
<tr>
<td>P8</td>
<td>0,088</td>
<td>0,088</td>
<td>0,088</td>
</tr>
<tr>
<td>P9</td>
<td>0,332</td>
<td>0,332</td>
<td>4,032</td>
</tr>
<tr>
<td>P10</td>
<td>0,280</td>
<td>0,280</td>
<td>3,980</td>
</tr>
<tr>
<td>P11</td>
<td>0,244</td>
<td>0,244</td>
<td>3,944</td>
</tr>
</tbody>
</table>
Obstoječe stanje 8 polnilnic 16 polnilnic

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Moč [kW]</th>
<th>Moč [kW]</th>
<th>Moč [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P12</td>
<td>1,140</td>
<td>4,840</td>
<td>4,840</td>
</tr>
<tr>
<td>P13</td>
<td>0,388</td>
<td>4,088</td>
<td>4,088</td>
</tr>
<tr>
<td>P14</td>
<td>3,084</td>
<td>6,784</td>
<td>6,784</td>
</tr>
<tr>
<td>P15</td>
<td>1,116</td>
<td>1,116</td>
<td>4,816</td>
</tr>
<tr>
<td>P16</td>
<td>0,468</td>
<td>0,468</td>
<td>0,468</td>
</tr>
<tr>
<td>P17</td>
<td>0,240</td>
<td>0,240</td>
<td>0,240</td>
</tr>
<tr>
<td>P18</td>
<td>1,504</td>
<td>1,504</td>
<td>5,204</td>
</tr>
<tr>
<td>P19</td>
<td>0,676</td>
<td>4,376</td>
<td>4,376</td>
</tr>
<tr>
<td>P20</td>
<td>0,008</td>
<td>3,708</td>
<td>3,708</td>
</tr>
<tr>
<td>P21</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>P22</td>
<td>1,368</td>
<td>1,368</td>
<td>1,368</td>
</tr>
<tr>
<td>P23</td>
<td>0,108</td>
<td>0,108</td>
<td>0,108</td>
</tr>
<tr>
<td>P24</td>
<td>1,928</td>
<td>1,928</td>
<td>1,928</td>
</tr>
<tr>
<td>P25</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P26</td>
<td>1,164</td>
<td>1,164</td>
<td>4,864</td>
</tr>
<tr>
<td>P27</td>
<td>0,180</td>
<td>0,180</td>
<td>3,880</td>
</tr>
<tr>
<td>P28</td>
<td>0,080</td>
<td>3,780</td>
<td>3,780</td>
</tr>
<tr>
<td>P29</td>
<td>0,608</td>
<td>4,308</td>
<td>4,308</td>
</tr>
<tr>
<td>P30</td>
<td>0,060</td>
<td>3,760</td>
<td>3,760</td>
</tr>
<tr>
<td>P31</td>
<td>0,120</td>
<td>0,120</td>
<td>3,820</td>
</tr>
</tbody>
</table>

Vhodne podatke smo vstavili v program MS Access, ki ga Gredos uporablja za bazo podatkov in nato v Gredosu zagnali izračun pretokov moči. Rezultati analize so medfazne napetosti pri odjemalcih in pretoki moči po NN kablih. V našem primeru so pomembni predvsem padeci napetosti pri odjemalcih, ki so podani v tabeli 6.2.

Tabela 6.2: Rezultati pri obstoječem stanju in stanju z električnimi polnilnicami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstoječe stanje</th>
<th>8 polnilnic</th>
<th>16 polnilnic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Padec napetosti [%]</td>
<td>Padec napetosti [%]</td>
<td>Padec napetosti [%]</td>
</tr>
<tr>
<td>P1</td>
<td>3,46</td>
<td>4,46</td>
<td>5,45</td>
</tr>
<tr>
<td>P2</td>
<td>3,53</td>
<td>4,61</td>
<td>5,69</td>
</tr>
<tr>
<td>P3</td>
<td>3,53</td>
<td>4,61</td>
<td>5,69</td>
</tr>
<tr>
<td>P4</td>
<td>3,81</td>
<td>4,98</td>
<td>6,14</td>
</tr>
<tr>
<td>P5</td>
<td>3,64</td>
<td>4,80</td>
<td>5,96</td>
</tr>
<tr>
<td>P6</td>
<td>3,64</td>
<td>4,81</td>
<td>5,97</td>
</tr>
<tr>
<td>P7</td>
<td>3,68</td>
<td>4,84</td>
<td>6,00</td>
</tr>
<tr>
<td>P8</td>
<td>3,71</td>
<td>5,04</td>
<td>6,37</td>
</tr>
<tr>
<td>P9</td>
<td>3,83</td>
<td>5,41</td>
<td>7,02</td>
</tr>
<tr>
<td>P10</td>
<td>3,84</td>
<td>5,42</td>
<td>7,21</td>
</tr>
<tr>
<td>P11</td>
<td>3,93</td>
<td>5,76</td>
<td>7,46</td>
</tr>
</tbody>
</table>
Osredotočimo se na padec napetosti pri najbolj oddaljenih odjemalcih. V našem primeru so to odjemalci P9 – P14. Pri obstoječem obratovalnem stanju se padec napetosti pri opazovanih odjemalcih giblje med 3,83 % in 4,15 %, ki predstavlja tudi največji padec v omrežju. Te vrednosti so v skladu s tehničnimi kriteriji načrtovanja, saj je omrežje dimenzionirano za take razmere. Poglejmo za iste odjemalce še primer uporabe domačih električnih polnilnic. V primeru z 8 polnilnicami je bil padec napetosti med 5,41 % in 6,38 %, kar še zadostuje kriterijem načrtovanja. V primeru s 16 polnilnicami pa je bil padec napetosti med 7,02 % in 8,07 %. Pri zadnjih treh odjemalcih P12, P13 in P14 je bil padec napetosti 7,58 %, 8,07 % in 8,01 %. V primeru takega obratovanja, omrežje ne zadostuje več kriterijem načrtovanja, saj je bil presežen dopustni padec napetosti 7,5 %. Obremenitev transformatorja je bila v obstoječem obratovalnem stanju 35 kW, v obratovalnem stanju z 8 polnilnicami 66 kW in v obratovalnem stanju s 16 polnilnicami 98 kW. Pri tem so bile izgube v omrežju približno 0,7 kW, 2,2 kW in 4,3 kW. Obremenitev transformatorja v nobenem primeru ni presegla nazivne 100 kW, ampak je bila v
zadnjem primeru presežena meja obremenjevanja transformatorja do 75 % nazivne moči.

Zaradi preseganja kriterijev v zadnjem primeru, smo obratovalno stanje s 16 polnilnicami analizirali še s transformatorjem nazivne moči 160 kW. V tem primeru je bil pri odjemalcih P12, P13 in P14 padec napetosti 6,66 %, 7,14 % in 7,09 %. Omrežje bi po zamenjavi transformatorja spet zadoščalo kriterijem načrtovanja.

V primeru, da bi se približno polovica odjemalcev odločila za nakup električnega avtomobila oz. da bi v obstoječe omrežje dodali 16 električnih polnilnic, bi bilo potrebno v bližnji prihodnosti omrežje ojačati. Omrežje bi ojačali z zamenjavo transformatorja.

6.3.2 Analiza vpliva toplotnih črpalk

Pri analizi smo obstoječemu obratovalnemu stanju dodali obremenitev s 16 toplotnimi črpalkami. Tudi tukaj smo morali izbrati obstoječe obratovalno stanje omrežja. Glede na to, da toplotne črpalke pozimi neprestano delujejo, smo obratovalno stanje izbirali med zimskimi meseci v celotnem delu dneva. Obremenitev toplotne črpalke 2 kW smo dodali istim 16 odjemalcem, kot pri analizi z električnimi polnilnicami. Vhodni podatki za analizo so v tabeli 6.3.

| Tabela 6.3: Vhodni podatki analize omrežja s toplotnimi črpalkami |
|------------------------+----------------+------------------|
Odjemalec	Obstoječe stanje	16 toplotnih črpalk
	Moč [kW]	Moč [kW]
P1	0,088	0,088
P2	0,332	0,332
P3	0,600	0,600
P4	0,340	0,340
P5	0,104	0,104
P6	2,284	2,284
P7	0,316	0,316
P8	0,104	0,104
P9	0,976	2,976
P10	0,624	2,624
P11	0,260	2,260
P12	3,016	5,016
P13	1,916	3,916
P14	3,572	5,572
6.3 Izračun napetostnih razmer

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstojče stanje</th>
<th>16 toplotnih črpalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moč [kW]</td>
<td>Moč [kW]</td>
</tr>
<tr>
<td>P15</td>
<td>0,112</td>
<td>2,112</td>
</tr>
<tr>
<td>P16</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>P17</td>
<td>2,256</td>
<td>2,256</td>
</tr>
<tr>
<td>P18</td>
<td>4,260</td>
<td>6,260</td>
</tr>
<tr>
<td>P19</td>
<td>0,084</td>
<td>2,084</td>
</tr>
<tr>
<td>P20</td>
<td>0,008</td>
<td>2,008</td>
</tr>
<tr>
<td>P21</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P22</td>
<td>17,036</td>
<td>17,036</td>
</tr>
<tr>
<td>P23</td>
<td>0,012</td>
<td>0,012</td>
</tr>
<tr>
<td>P24</td>
<td>1,280</td>
<td>1,280</td>
</tr>
<tr>
<td>P25</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P26</td>
<td>1,316</td>
<td>3,316</td>
</tr>
<tr>
<td>P27</td>
<td>3,012</td>
<td>5,012</td>
</tr>
<tr>
<td>P28</td>
<td>0,056</td>
<td>2,056</td>
</tr>
<tr>
<td>P29</td>
<td>2,256</td>
<td>4,256</td>
</tr>
<tr>
<td>P30</td>
<td>1,940</td>
<td>3,940</td>
</tr>
<tr>
<td>P31</td>
<td>0,524</td>
<td>2,524</td>
</tr>
</tbody>
</table>

Po vnosu podatkov smo pognali izračun v Gredosu in dobili padce napetosti pri vseh odjemalcih, ki so v tabeli 6.4.

Tabela 6.4: Rezultati pri obstojčem stanju in stanju s toplotnimi črpalkami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstojče stanje</th>
<th>16 toplotnih črpalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Padec napetosti [%]</td>
<td>Padec napetosti [%]</td>
</tr>
<tr>
<td>P1</td>
<td>3,50</td>
<td>4,57</td>
</tr>
<tr>
<td>P2</td>
<td>3,61</td>
<td>4,77</td>
</tr>
<tr>
<td>P3</td>
<td>3,62</td>
<td>4,78</td>
</tr>
<tr>
<td>P4</td>
<td>3,71</td>
<td>4,96</td>
</tr>
<tr>
<td>P5</td>
<td>3,71</td>
<td>4,95</td>
</tr>
<tr>
<td>P6</td>
<td>3,76</td>
<td>5,01</td>
</tr>
<tr>
<td>P7</td>
<td>3,71</td>
<td>4,96</td>
</tr>
<tr>
<td>P8</td>
<td>3,86</td>
<td>5,28</td>
</tr>
<tr>
<td>P9</td>
<td>4,08</td>
<td>5,79</td>
</tr>
<tr>
<td>P10</td>
<td>4,11</td>
<td>5,91</td>
</tr>
<tr>
<td>P11</td>
<td>4,27</td>
<td>6,16</td>
</tr>
<tr>
<td>P12</td>
<td>4,36</td>
<td>6,30</td>
</tr>
<tr>
<td>P13</td>
<td>4,56</td>
<td>6,72</td>
</tr>
<tr>
<td>P14</td>
<td>4,56</td>
<td>6,63</td>
</tr>
<tr>
<td>P15</td>
<td>3,51</td>
<td>4,76</td>
</tr>
<tr>
<td>P16</td>
<td>3,24</td>
<td>4,01</td>
</tr>
<tr>
<td>P17</td>
<td>3,44</td>
<td>4,37</td>
</tr>
</tbody>
</table>
Obstoječe stanje

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Padec napetosti [%]</th>
<th>Padeč napetosti [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P18</td>
<td>3,51</td>
<td>4,62</td>
</tr>
<tr>
<td>P19</td>
<td>3,51</td>
<td>4,78</td>
</tr>
<tr>
<td>P20</td>
<td>3,51</td>
<td>4,81</td>
</tr>
<tr>
<td>P21</td>
<td>3,16</td>
<td>3,88</td>
</tr>
<tr>
<td>P22</td>
<td>3,81</td>
<td>4,54</td>
</tr>
<tr>
<td>P23</td>
<td>3,27</td>
<td>4,14</td>
</tr>
<tr>
<td>P24</td>
<td>3,37</td>
<td>4,32</td>
</tr>
<tr>
<td>P25</td>
<td>3,46</td>
<td>4,56</td>
</tr>
<tr>
<td>P26</td>
<td>3,74</td>
<td>5,22</td>
</tr>
<tr>
<td>P27</td>
<td>3,93</td>
<td>5,63</td>
</tr>
<tr>
<td>P28</td>
<td>3,98</td>
<td>5,78</td>
</tr>
<tr>
<td>P29</td>
<td>4,04</td>
<td>5,90</td>
</tr>
<tr>
<td>P30</td>
<td>3,98</td>
<td>5,74</td>
</tr>
<tr>
<td>P31</td>
<td>3,75</td>
<td>5,30</td>
</tr>
</tbody>
</table>

Spet se osredotočimo na odjemalce P9 – P14, ki so najbolj oddaljeni od TP. V obstoječem obratovalnem stanju je bil padec napetosti pri teh odjemalcih med 4,08 % in 4,56 %, kar popolnoma izpolnjuje kriterije načrtovanja. Pri dodani obremenitvi toplotnih črpalk je bil padec napetosti med 5,79 % in 6,72 %. Transformator je bil pri obstoječem obratovalnem stanju obremenjen z 51 kW, pri obratovalnem stanju s 16 toplotnimi črpalkami pa s 84 kW. Izgube so za oba obratovalna stanja znašale 1,2 kW in 3,0 kW.

Pri obremenitvi omrežja s toplotnimi črpalkami ni bil presežen dopustni padec napetosti 7,5 %. Presežena je bila le meja obremenjevanja transformatorja do 75 % nazivne moči. V primeru, da bi se tako stanje ponovilo nekajkrat v letu, zamenjava transformatorja ne bi bila potrebna. Če pa bi se to zgodilo nekajkrat v tednu, bi morali v bližnji prihodnosti zamenjati transformator z večjim.

6.3.3 Analiza vpliva električnih polnilnic in toplotnih črpalk

Pri analizi smo omrežje obremenili s kombinacijo električnih polnilnic in toplotnih črpalk. Združili smo kombinacijo obremenitve iz poglavja 6.3.1 in 6.3.2. Odjemalci, ki smo jim dodali toplotne črpalke in električne polnilnice so enaki kot v omenjenih poglavjih. Obratovalno stanje, ki smo ga izbrali iz podatkov, je bilo pri največji obremenitvi transformatorja v zimskih mesecih v času nizke tarife. Vhodni podatki za izračun se nahajajo v tabeli 6.5.
Tabela 6.5: Vhodni podatki za analizo omrežja z električnimi polnilnicami in toplotnimi črpalkami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstojeca stanje</th>
<th>8 polnilnic, 16 toplotnih črpalk</th>
<th>16 polnilnic, 16 toplotnih črpalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moč [kW]</td>
<td>Moč [kW]</td>
<td>Moč [kW]</td>
</tr>
<tr>
<td>P1</td>
<td>0,184</td>
<td>0,184</td>
<td>0,184</td>
</tr>
<tr>
<td>P2</td>
<td>0,132</td>
<td>0,132</td>
<td>0,132</td>
</tr>
<tr>
<td>P3</td>
<td>0,208</td>
<td>0,208</td>
<td>0,208</td>
</tr>
<tr>
<td>P4</td>
<td>0,344</td>
<td>0,344</td>
<td>0,344</td>
</tr>
<tr>
<td>P5</td>
<td>0,056</td>
<td>0,056</td>
<td>0,056</td>
</tr>
<tr>
<td>P6</td>
<td>0,184</td>
<td>0,184</td>
<td>0,184</td>
</tr>
<tr>
<td>P7</td>
<td>0,940</td>
<td>0,940</td>
<td>0,940</td>
</tr>
<tr>
<td>P8</td>
<td>0,100</td>
<td>0,100</td>
<td>0,100</td>
</tr>
<tr>
<td>P9</td>
<td>0,280</td>
<td>2,280</td>
<td>5,980</td>
</tr>
<tr>
<td>P10</td>
<td>0,268</td>
<td>2,268</td>
<td>5,968</td>
</tr>
<tr>
<td>P11</td>
<td>0,544</td>
<td>2,544</td>
<td>6,244</td>
</tr>
<tr>
<td>P12</td>
<td>0,528</td>
<td>6,228</td>
<td>6,228</td>
</tr>
<tr>
<td>P13</td>
<td>0,344</td>
<td>6,044</td>
<td>6,044</td>
</tr>
<tr>
<td>P14</td>
<td>0,792</td>
<td>6,492</td>
<td>6,492</td>
</tr>
<tr>
<td>P15</td>
<td>0,084</td>
<td>2,084</td>
<td>5,784</td>
</tr>
<tr>
<td>P16</td>
<td>0,364</td>
<td>0,364</td>
<td>0,364</td>
</tr>
<tr>
<td>P17</td>
<td>0,052</td>
<td>0,052</td>
<td>0,052</td>
</tr>
<tr>
<td>P18</td>
<td>0,724</td>
<td>2,724</td>
<td>6,424</td>
</tr>
<tr>
<td>P19</td>
<td>0,720</td>
<td>6,420</td>
<td>6,420</td>
</tr>
<tr>
<td>P20</td>
<td>0,708</td>
<td>6,408</td>
<td>6,408</td>
</tr>
<tr>
<td>P21</td>
<td>1,184</td>
<td>1,184</td>
<td>1,184</td>
</tr>
<tr>
<td>P22</td>
<td>17,156</td>
<td>17,156</td>
<td>17,156</td>
</tr>
<tr>
<td>P23</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P24</td>
<td>0,444</td>
<td>0,444</td>
<td>0,444</td>
</tr>
<tr>
<td>P25</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P26</td>
<td>0,248</td>
<td>2,248</td>
<td>5,948</td>
</tr>
<tr>
<td>P27</td>
<td>0,284</td>
<td>2,284</td>
<td>5,984</td>
</tr>
<tr>
<td>P28</td>
<td>0,352</td>
<td>6,052</td>
<td>6,052</td>
</tr>
<tr>
<td>P29</td>
<td>1,056</td>
<td>6,756</td>
<td>6,756</td>
</tr>
<tr>
<td>P30</td>
<td>0,000</td>
<td>5,700</td>
<td>5,700</td>
</tr>
<tr>
<td>P31</td>
<td>0,024</td>
<td>2,024</td>
<td>5,724</td>
</tr>
</tbody>
</table>

Za analizo omrežja pri obratovalnem stanju s 16 polnilnicami in 16 toplotnimi črpalkami smo morali v modelu zamenjati transformator nazivne moči 100 kW s transformatorjem nazivne moči 160 kW, saj skupna obremenitev porabnikov presega nazivno obremenitev. Pri normalnih obratovalnih stanjih je dovoljeno obratovanje do nazivne moči in zaradi bolj realnega prikaza stanja omrežja, je bila zamenjava nujna.
Po vnosu podatkov smo pognali izračun v Gredosu in dobili rezultate, ki so v tabeli 6.6.

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstoječe stanje</th>
<th>8 polnilnic, 16 toplotnih črpalk</th>
<th>16 polnilnic, 16 toplotnih črpalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2,82</td>
<td>4,73</td>
<td>4,73</td>
</tr>
<tr>
<td>P2</td>
<td>2,86</td>
<td>4,93</td>
<td>5,02</td>
</tr>
<tr>
<td>P3</td>
<td>2,86</td>
<td>4,94</td>
<td>5,03</td>
</tr>
<tr>
<td>P4</td>
<td>2,89</td>
<td>5,14</td>
<td>5,32</td>
</tr>
<tr>
<td>P5</td>
<td>2,89</td>
<td>5,14</td>
<td>5,31</td>
</tr>
<tr>
<td>P6</td>
<td>2,89</td>
<td>5,14</td>
<td>5,31</td>
</tr>
<tr>
<td>P7</td>
<td>2,90</td>
<td>5,15</td>
<td>5,33</td>
</tr>
<tr>
<td>P8</td>
<td>2,93</td>
<td>5,52</td>
<td>5,86</td>
</tr>
<tr>
<td>P9</td>
<td>2,99</td>
<td>6,11</td>
<td>6,73</td>
</tr>
<tr>
<td>P10</td>
<td>3,00</td>
<td>6,21</td>
<td>7,01</td>
</tr>
<tr>
<td>P11</td>
<td>3,04</td>
<td>6,58</td>
<td>7,29</td>
</tr>
<tr>
<td>P12</td>
<td>3,05</td>
<td>6,76</td>
<td>7,43</td>
</tr>
<tr>
<td>P13</td>
<td>3,09</td>
<td>7,41</td>
<td>8,09</td>
</tr>
<tr>
<td>P14</td>
<td>3,09</td>
<td>7,17</td>
<td>7,85</td>
</tr>
<tr>
<td>P15</td>
<td>2,83</td>
<td>4,91</td>
<td>5,25</td>
</tr>
<tr>
<td>P16</td>
<td>2,74</td>
<td>4,12</td>
<td>3,79</td>
</tr>
<tr>
<td>P17</td>
<td>2,78</td>
<td>4,53</td>
<td>4,30</td>
</tr>
<tr>
<td>P18</td>
<td>2,84</td>
<td>5,00</td>
<td>4,88</td>
</tr>
<tr>
<td>P19</td>
<td>2,90</td>
<td>5,51</td>
<td>5,39</td>
</tr>
<tr>
<td>P20</td>
<td>2,91</td>
<td>5,59</td>
<td>5,46</td>
</tr>
<tr>
<td>P21</td>
<td>2,75</td>
<td>4,05</td>
<td>3,69</td>
</tr>
<tr>
<td>P22</td>
<td>3,36</td>
<td>4,66</td>
<td>4,31</td>
</tr>
<tr>
<td>P23</td>
<td>2,73</td>
<td>4,25</td>
<td>4,06</td>
</tr>
<tr>
<td>P24</td>
<td>2,76</td>
<td>4,41</td>
<td>4,34</td>
</tr>
<tr>
<td>P25</td>
<td>2,77</td>
<td>4,68</td>
<td>4,79</td>
</tr>
<tr>
<td>P26</td>
<td>2,83</td>
<td>5,34</td>
<td>5,93</td>
</tr>
<tr>
<td>P27</td>
<td>2,88</td>
<td>5,81</td>
<td>6,60</td>
</tr>
<tr>
<td>P28</td>
<td>2,91</td>
<td>6,01</td>
<td>6,89</td>
</tr>
<tr>
<td>P29</td>
<td>2,94</td>
<td>6,20</td>
<td>7,08</td>
</tr>
<tr>
<td>P30</td>
<td>2,88</td>
<td>5,96</td>
<td>6,75</td>
</tr>
<tr>
<td>P31</td>
<td>2,83</td>
<td>5,40</td>
<td>6,11</td>
</tr>
</tbody>
</table>

V obstoječem obratovalnem stanju je bil največji padec napetosti 3,36 % pri odjemalcu P22. Pri obratovanju z 8 polnilnicami so bili padci napetosti pri odjemalcih P9 do P14 med 6,11 % in 7,41 %. V obeh primerih ni bil prekoračen
izračun napetostnih razmer

dopustni padec napetosti. Pri obratovanju s 16 polnilnicami in toplotnimi črpalkami so bili padci napetosti med 6,73 % in 8,09 %. Padea napetosti pri odjemalcem P13 in P14 sta bila 8,09 % in 7,85 % in presegata dopustno mejo. Kljub zamenjavi transformatorja, omrežje v tem primeru ne zadostuje kriterijem načrtovanja. Pri analiziranih primerih je bila obremenitev transformatorja 29 kW, 90 kW in 125 kW. V obeh primerih obremenitev s polnilnicami in toplotnimi črpalkami je bila presežena meja obremenjevanja transformatorja.

V primeru s 16 polnilnicami in 16 toplotnimi črpalkami bi bila potrebna še dodatna ojačitev omrežja. V primeru z 8 polnilnicami in 16 toplotnimi črpalkami zamenjava transformatorja ne bi bila potrebna, če se taka obremenitev ne bi pojavila nekajkrat na teden.

6.3.4 Analiza vpliva sončnih elektrarn in električnih polnilnic

Najprej smo analizirali omrežje s 16 sončnimi elektrarnami, ki smo jih priključili odjemalcem iz prejšnjih primerov. Izbrali smo obratovalno stanje v poletnem času, ko sončne elektrarne dosegajo najvišje moči. Med podatki smo iskali najnižjo izmerjeno porabo okoli poldneva. Po izbiri obratovalnega stanja smo šestnajstim odjemalcem dodali proizvodni vir z močjo 10 kW. Tudi v tem primeru smo pred izračunom v modelu zamenjali transformator nazivne moči 100 kW, z nazivno močjo 160 kW.

V drugem primeru pa smo v poletnih mesecih poiskali obratovalno stanje z največjo porabo okoli poldneva, istim odjemalcem smo dodali obremenitev električnih polnilnic in proizvodne vire. Obratovalno stanje, ko istočasno obratujejo sončne elektrarne in se polnijo električni avtomobili, se lahko zgodijo med vikendi, ko so ljudje večji del dneva doma. Vhodni podatki za obe analizy so v tabeli 6.7.

Tabela 6.7: Vhodni podatki za analizo omrežja s sončnimi elektrarnami in električnimi polnilnicami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstojče stanje pri nizki porabi</th>
<th>Obstojče stanje pri visoki porabi</th>
<th>16 polnilnic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moč [kW]</td>
<td>Moč [kW]</td>
<td>Moč [kW]</td>
</tr>
<tr>
<td>P1</td>
<td>0,244</td>
<td>6,656</td>
<td>6,656</td>
</tr>
<tr>
<td>P2</td>
<td>0,228</td>
<td>2,856</td>
<td>2,856</td>
</tr>
<tr>
<td>P3</td>
<td>0,300</td>
<td>0,424</td>
<td>0,424</td>
</tr>
<tr>
<td>P4</td>
<td>0,496</td>
<td>5,748</td>
<td>5,748</td>
</tr>
<tr>
<td>P5</td>
<td>0,072</td>
<td>0,176</td>
<td>0,176</td>
</tr>
</tbody>
</table>
Model NN omrežja in izračun napetostnih razmer

Obstoječe stanje pri nizki porabi

Obstoječe stanje pri visoki porabi

16 polnilnic

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Moč [kW]</th>
<th>Moč [kW]</th>
<th>Moč [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>0,288</td>
<td>0,528</td>
<td>0,528</td>
</tr>
<tr>
<td>P7</td>
<td>0,316</td>
<td>1,744</td>
<td>1,744</td>
</tr>
<tr>
<td>P8</td>
<td>0,068</td>
<td>0,112</td>
<td>0,112</td>
</tr>
<tr>
<td>P9</td>
<td>0,276</td>
<td>0,308</td>
<td>4,008</td>
</tr>
<tr>
<td>P10</td>
<td>0,260</td>
<td>0,256</td>
<td>3,956</td>
</tr>
<tr>
<td>P11</td>
<td>0,084</td>
<td>0,144</td>
<td>3,844</td>
</tr>
<tr>
<td>P12</td>
<td>0,364</td>
<td>0,296</td>
<td>3,996</td>
</tr>
<tr>
<td>P13</td>
<td>0,332</td>
<td>0,252</td>
<td>3,952</td>
</tr>
<tr>
<td>P14</td>
<td>0,308</td>
<td>3,064</td>
<td>6,764</td>
</tr>
<tr>
<td>P15</td>
<td>0,316</td>
<td>0,520</td>
<td>4,220</td>
</tr>
<tr>
<td>P16</td>
<td>0,664</td>
<td>2,180</td>
<td>2,180</td>
</tr>
<tr>
<td>P17</td>
<td>0,244</td>
<td>0,752</td>
<td>0,752</td>
</tr>
<tr>
<td>P18</td>
<td>1,148</td>
<td>1,284</td>
<td>4,984</td>
</tr>
<tr>
<td>P19</td>
<td>0,556</td>
<td>0,016</td>
<td>3,716</td>
</tr>
<tr>
<td>P20</td>
<td>0,004</td>
<td>0,004</td>
<td>3,704</td>
</tr>
<tr>
<td>P21</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P22</td>
<td>1,856</td>
<td>3,236</td>
<td>3,236</td>
</tr>
<tr>
<td>P23</td>
<td>0,148</td>
<td>0,060</td>
<td>0,060</td>
</tr>
<tr>
<td>P24</td>
<td>0,660</td>
<td>0,588</td>
<td>0,588</td>
</tr>
<tr>
<td>P25</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P26</td>
<td>0,224</td>
<td>2,768</td>
<td>6,468</td>
</tr>
<tr>
<td>P27</td>
<td>0,592</td>
<td>0,324</td>
<td>4,024</td>
</tr>
<tr>
<td>P28</td>
<td>0,036</td>
<td>0,132</td>
<td>3,832</td>
</tr>
<tr>
<td>P29</td>
<td>0,064</td>
<td>0,944</td>
<td>4,644</td>
</tr>
<tr>
<td>P30</td>
<td>0,040</td>
<td>0,008</td>
<td>3,708</td>
</tr>
<tr>
<td>P31</td>
<td>0,148</td>
<td>0,244</td>
<td>3,944</td>
</tr>
</tbody>
</table>

Za vsako analizo posebej smo podatke vstavili v MS Access, poleg tega smo za analizi s sončnimi elektrarnami vstavili tudi moči proizvodnih virov. Rezultati analiz so v tabeli 6.8.

Tabela 6.8: Rezultati analize s sončnimi elektrarnami in električnimi polnilnicami

<table>
<thead>
<tr>
<th>Nizka poraba</th>
<th>Visoka poraba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstoječe stanje</td>
<td>16 SE</td>
</tr>
<tr>
<td>Odjemalec</td>
<td>ΔU [%]</td>
</tr>
<tr>
<td>P1</td>
<td>2,42</td>
</tr>
<tr>
<td>P2</td>
<td>2,45</td>
</tr>
<tr>
<td>P3</td>
<td>2,45</td>
</tr>
<tr>
<td>P4</td>
<td>2,48</td>
</tr>
</tbody>
</table>
6.3 Izračun napetostnih razmer

<table>
<thead>
<tr>
<th>Obdobje stanja</th>
<th>16 SE</th>
<th>Obdobje stanja</th>
<th>16 SE in polnilnic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odjemalec</td>
<td>ΔU [%]</td>
<td>ΔU [%]</td>
<td>ΔU [%]</td>
</tr>
<tr>
<td>P5</td>
<td>2,47</td>
<td>-1,61</td>
<td>3,61</td>
</tr>
<tr>
<td>P6</td>
<td>2,47</td>
<td>-1,60</td>
<td>3,62</td>
</tr>
<tr>
<td>P7</td>
<td>2,47</td>
<td>-1,60</td>
<td>3,64</td>
</tr>
<tr>
<td>P8</td>
<td>2,49</td>
<td>-2,37</td>
<td>3,67</td>
</tr>
<tr>
<td>P9</td>
<td>2,53</td>
<td>-3,59</td>
<td>3,76</td>
</tr>
<tr>
<td>P10</td>
<td>2,54</td>
<td>-4,00</td>
<td>3,77</td>
</tr>
<tr>
<td>P11</td>
<td>2,55</td>
<td>-4,36</td>
<td>3,84</td>
</tr>
<tr>
<td>P12</td>
<td>2,56</td>
<td>-4,56</td>
<td>3,85</td>
</tr>
<tr>
<td>P13</td>
<td>2,59</td>
<td>-5,46</td>
<td>3,94</td>
</tr>
<tr>
<td>P14</td>
<td>2,58</td>
<td>-5,10</td>
<td>4,05</td>
</tr>
<tr>
<td>P15</td>
<td>2,45</td>
<td>-1,68</td>
<td>3,45</td>
</tr>
<tr>
<td>P16</td>
<td>2,38</td>
<td>0,42</td>
<td>2,99</td>
</tr>
<tr>
<td>P17</td>
<td>2,40</td>
<td>-0,31</td>
<td>2,96</td>
</tr>
<tr>
<td>P18</td>
<td>2,45</td>
<td>-1,11</td>
<td>2,98</td>
</tr>
<tr>
<td>P19</td>
<td>2,47</td>
<td>-1,83</td>
<td>2,98</td>
</tr>
<tr>
<td>P20</td>
<td>2,47</td>
<td>-1,94</td>
<td>2,98</td>
</tr>
<tr>
<td>P21</td>
<td>2,33</td>
<td>0,56</td>
<td>2,86</td>
</tr>
<tr>
<td>P22</td>
<td>2,40</td>
<td>0,63</td>
<td>2,98</td>
</tr>
<tr>
<td>P23</td>
<td>2,35</td>
<td>-0,03</td>
<td>2,92</td>
</tr>
<tr>
<td>P24</td>
<td>2,38</td>
<td>-0,41</td>
<td>2,96</td>
</tr>
<tr>
<td>P25</td>
<td>2,38</td>
<td>-1,09</td>
<td>3,01</td>
</tr>
<tr>
<td>P26</td>
<td>2,41</td>
<td>-2,75</td>
<td>3,14</td>
</tr>
<tr>
<td>P27</td>
<td>2,43</td>
<td>-3,72</td>
<td>3,18</td>
</tr>
<tr>
<td>P28</td>
<td>2,43</td>
<td>-4,12</td>
<td>3,20</td>
</tr>
<tr>
<td>P29</td>
<td>2,43</td>
<td>-4,37</td>
<td>3,23</td>
</tr>
<tr>
<td>P30</td>
<td>2,43</td>
<td>-3,96</td>
<td>3,18</td>
</tr>
<tr>
<td>P31</td>
<td>2,41</td>
<td>-3,05</td>
<td>3,15</td>
</tr>
</tbody>
</table>

Pri obeh obstoječih obratovalnih stanjih so bili padci napetosti v dovoljenih mejah. Pri nizki porabi je bil največji padec napetosti 2,59 %, pri visoki porabi pa 4,05 %. Pri obratovalnem stanju pri nizki porabi s 16 sončnimi elektrarnami, so bili pri večini odjemalcev padci napetosti negativni, torej so bile napetosti nad nazivnimi. Pri odjemalcih P13 in P14 je bil dvig napetosti 5,46 % in 5,10 %, kar presega dovoljeno mejo 5 %. Pri obratovalnem stanju pri visoki porabi s 16 sončnimi elektrarnami in 16 električnimi polnilnicami, je bil najvišji padec napetosti 1,21 % pri odjemalcu P22, najvišji dvig napetosti pa je bil 1,95 % pri odjemalcu P13. V tem primeru s padci napetosti zadoščamo kriterijem načrtovanja.
V obstoječem stanju pri nizki porabi je bil transformator obremenjen z 11 kW moči, pri visoki porabi pa s 36 kW. Pri nizki porabi s sončnimi elektrarnami je bil transformator obremenjen z 144 kW moči, kjer je bil pretok moči v SN omrežje. V tem primeru je bila presežena tudi meja obremenjevanja transformatorja do 75% nazivne moči. Pri visoki porabi s sončnimi elektrarnami in z električnimi polnilnicami je bil pretok moči še vedno v SN omrežje, transformator pa je obratoval s 53 kW.

Kriteriji načrtovanja niso bili izpolnjeni le pri nizki porabi s sončnimi elektrarnami. Kljub zamenjavi transformatorja je bila napetost vseeno previsoka. V tem primeru bi bila smiselna omejitev delovne moči sončnih elektrarn oz. njihovo sodelovanje pri regulaciji napetosti. Zanimiv primer pri polnjenju električnih avtomobilov je uporaba sončnih elektrarn, saj v tem primeru ni bilo težav s padci in dvigi napetosti. Poudariti je potrebno, da smo analizirali nekoliko idealizirano stanje, kjer je na mestu velike porabe tudi velika proizvodnja. Razmere bi se lahko poslabšale pri drugačni postavitvi, kjer bi imeli pri oddaljenih odjemalcih visoko porabo, pri odjemalcih zraven TP pa visoko proizvodnjo. Analizirano stanje bi se lahko najverjetneje zgodilo le med vikendi, v ostalih delih tedna pa bi se soočali s prenizkimi napetostmi ponoči, ko bi polnili električne avtomobile in previsokimi napetostmi podnevi, ko bi pri nizki porabi obratovalo sončne elektrarne.

6.3.5 Analiza vpliva električnih polnilnic, toplotnih črpalk in sončnih elektrarn

Pri zadnjem primeru smo analizirali vpliv električnih polnilnic, toplotnih črpalk in sončnih elektrarn na NN omrežje. Obratovalno stanje, ko obratujejo vse tri naprave naenkrat, je najverjetneje na sončen dan v zimskem času med vikendom. Izbrali smo obratovalno stanje pri največji obremenitvi transformatorja, okoli opoldneva. Dodatne obremenitve smo dodali 16 odjemalcem iz prejšnjih primerov. Glede na to, da je pozimi manjša moč sončnega obsevanja, smo za moči sončnih elektrarn upoštevali 6,5 kW. Vhodni podatki z in brez dodanih obremenitev so v tabeli 6.9.
Tabela 6.9: Vhodni podatki analize omrežja z električnimi polnilnicami, toplotnimi črpalkami in sončnimi elektrarnami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstoječe stanje Moč [kW]</th>
<th>16 polnilnic in toplotnih črpalk Moč [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0,220</td>
<td>0,220</td>
</tr>
<tr>
<td>P2</td>
<td>0,388</td>
<td>0,388</td>
</tr>
<tr>
<td>P3</td>
<td>0,220</td>
<td>0,220</td>
</tr>
<tr>
<td>P4</td>
<td>0,784</td>
<td>0,784</td>
</tr>
<tr>
<td>P5</td>
<td>0,056</td>
<td>0,056</td>
</tr>
<tr>
<td>P6</td>
<td>0,432</td>
<td>0,432</td>
</tr>
<tr>
<td>P7</td>
<td>2,272</td>
<td>2,272</td>
</tr>
<tr>
<td>P8</td>
<td>0,104</td>
<td>0,104</td>
</tr>
<tr>
<td>P9</td>
<td>0,336</td>
<td>6,036</td>
</tr>
<tr>
<td>P10</td>
<td>0,364</td>
<td>6,064</td>
</tr>
<tr>
<td>P11</td>
<td>0,632</td>
<td>6,332</td>
</tr>
<tr>
<td>P12</td>
<td>0,944</td>
<td>6,644</td>
</tr>
<tr>
<td>P13</td>
<td>0,604</td>
<td>6,304</td>
</tr>
<tr>
<td>P14</td>
<td>0,964</td>
<td>6,664</td>
</tr>
<tr>
<td>P15</td>
<td>1,480</td>
<td>7,180</td>
</tr>
<tr>
<td>P16</td>
<td>0,828</td>
<td>0,828</td>
</tr>
<tr>
<td>P17</td>
<td>0,260</td>
<td>0,260</td>
</tr>
<tr>
<td>P18</td>
<td>5,172</td>
<td>10,872</td>
</tr>
<tr>
<td>P19</td>
<td>0,008</td>
<td>5,708</td>
</tr>
<tr>
<td>P20</td>
<td>2,644</td>
<td>8,344</td>
</tr>
<tr>
<td>P21</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P22</td>
<td>2,108</td>
<td>2,108</td>
</tr>
<tr>
<td>P23</td>
<td>0,144</td>
<td>0,144</td>
</tr>
<tr>
<td>P24</td>
<td>3,480</td>
<td>3,480</td>
</tr>
<tr>
<td>P25</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>P26</td>
<td>3,880</td>
<td>9,580</td>
</tr>
<tr>
<td>P27</td>
<td>1,920</td>
<td>7,620</td>
</tr>
<tr>
<td>P28</td>
<td>1,380</td>
<td>7,080</td>
</tr>
<tr>
<td>P29</td>
<td>0,472</td>
<td>6,172</td>
</tr>
<tr>
<td>P30</td>
<td>1,888</td>
<td>7,588</td>
</tr>
<tr>
<td>P31</td>
<td>0,320</td>
<td>6,020</td>
</tr>
</tbody>
</table>

Po vstavitvi vhodnih podatkov in vključitvi sončnih elektrarn smo zagnali izračun pretokov moči in dobili rezultate v tabeli.
Tabela 6.10: Rezultati analize z električnimi polnilnicami, toplotnimi črpalkami in sončnimi elektrarnami

<table>
<thead>
<tr>
<th>Odjemalec</th>
<th>Obstoječe stanje</th>
<th>Padec napetosti [V]</th>
<th>16 polnilnic, toplotnih črpalk in sončnih elektrarn</th>
<th>Padec napetosti [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3,19</td>
<td>2,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>3,30</td>
<td>2,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>3,29</td>
<td>2,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>3,46</td>
<td>2,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>3,41</td>
<td>2,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>3,40</td>
<td>2,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>3,38</td>
<td>2,74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>3,47</td>
<td>2,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>3,47</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>3,49</td>
<td>2,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>3,50</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>3,53</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>3,52</td>
<td>2,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>3,53</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>3,39</td>
<td>2,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>2,85</td>
<td>2,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>2,91</td>
<td>2,76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>2,94</td>
<td>2,91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P19</td>
<td>2,99</td>
<td>2,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td>3,00</td>
<td>2,98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>2,87</td>
<td>2,56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>2,89</td>
<td>2,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P23</td>
<td>3,00</td>
<td>2,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P24</td>
<td>3,09</td>
<td>2,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P25</td>
<td>3,38</td>
<td>2,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P26</td>
<td>3,51</td>
<td>2,93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P27</td>
<td>3,73</td>
<td>3,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P28</td>
<td>3,77</td>
<td>3,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P29</td>
<td>3,83</td>
<td>2,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P30</td>
<td>3,82</td>
<td>3,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P31</td>
<td>3,50</td>
<td>2,91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pri obstoječem obratovalnem stanju je bil najvišji padec napetosti 3,83 % pri odjemalcu P29. V obratovalnem stanju, ko istočasno obratujejo sončne elektrarne, toplotne črpalke in električne polnilnice, je bil največji padec napetosti 3,03 % pri odjemalcu P30. V obeh primerih so bili izpolnjeni kriteriji načrtovanja.
Transformator je bil pri obstoječi porabi obremenjen s 36 kW, pri obratovanju s sončnimi elektrarnami, toplotnimi črpalkami in električnimi polnilnicami pa z 22 kW. V slednjem primeru je proizvodnja električne energije presegala porabo, zato je bil pretok moči v SN omrežje.

Obravnavano stanje omrežja je dober primer uporabe razpršene proizvodnje za podporo pri visokih obremenitvah v omrežju, saj smo videli, da so se padci napetosti v NN omrežju zmanjšali. Težava v tem primeru je, da imamo v zelo malo obratovalnih stanj istočasno visoko proizvodnjo električne energije iz sončnih elektrarn in visoko porabo zaradi elektrifikacije prometa in ogrevanja. V večini primerov bi imeli težave s prenizko napetostjo v nizki tarifi zaradi polnilnic in toplotnih črpalk, kot v poglavju 6.3.3. in previsokimi napetostmi v visoki tarifi zaradi sončnih elektrarn, kot v poglavju 6.3.4.
Zaključek

Za zagotavljanje kakovosti električne energije je zadolžen operater omrežja, ki mora spremljati obratovanje elektroenergetskega omrežja in skrbeti za njegov kratkoročni in dolgoročni razvoj. V ta namen operaterji omrežja določajo kriterije in razvijajo programsko opremo za pravilno načrtovanje omrežja.

Najprej smo analizirali vpliv električnih polnilnic na izbrano NN omrežje in ugotovili, da pri obremenitvi s 16 polnilnicami omrežje ne zadostuje kriterijem načrtovanja, saj je bil pri treh odjemalcih padec napetosti večji kot 7,5 %. Tudi v primeru obremenitve s 16 toplotnimi črpalkami in 16 električnimi polnilnicami je pri istih odjemalcih padec napetosti presegal dovoljeno mejo, kljub zamenjavi transformatorja. Zanimivo je bilo obratovalno stanje z 8 polnilnicami in 16 toplotnimi črpalkami, kjer kljub velikem številu polnilnic in toplotnih črpalk, niso bili preseženi kriteriji načrtovanja. To dokazuje, da je v omrežju še vedno dovolj rezerve za povečanje obremenitve. Semo pa v tem primeru prišli ravno do meje.
Zaključek
zadoščanja kriterijem, saj je bil najvišji padec napetosti 7,41 %. Tudi pri obratovalnem stanju s 16 toplotnimi črpalkami je omrežje zadoščalo kriterijem načrtovanja. Previsoki dvigi napetosti so se pojavili pri obratovalnem stanju s 16 sončnimi elektrarnami, saj je dvig napetosti pri dveh odjemalcih presegal mejo 5 %, kljub zamenjavi transformerja. Pri pregledu rezultatov smo omenjali le padece napetosti in obremenjenost transformerja, nikjer pa nismo omenili obremenjenost kablovodov, saj v nobenem od analiziranih obratovalnih stanj, ni obremenitev presegala omejitve obremenjevanja kablovodov. Najboljše razmere v omrežju, kljub visoki porabi, so bile pri obratovalnih stanjih s kombinacijo sončnih elektrarn, električnih polnilnic in toplotnih črpalk. V obeh primerih so se padci napetosti precej zmanjšali, glede na obratovalna stanja brez proizvodnje električne energije in omrežje je zadoščalo kriterijem načrtovanja. V teh primerih je bila konfiguracija omrežje precej idealizirana, saj je bila proizvodnja in visoka poraba pri istih odjemalcih. Zavedati se moramo, da pri drugačni konfiguraciji, kjer bi bila visoka poraba pri najbolj oddaljenih odjemalcih in proizvodnja pri odjemalcih bližje TP, ne bi bilo stanje v omrežju tako dobro. Obratovalna stanja, kjer imamo istočasno visoko porabo in visoko proizvodnjo iz sončnih elektrarn, se v omrežju redko pojavijo, zato bi v večini primerov imeli prenizke napetosti zvečer pri visoki porabi in previsoke napetosti opoldne pri nizki porabi ter visoki proizvodnji iz sončnih elektrarn.

Izbrano omrežje smo analizirali v skrajnih točkah normalnega obratovanja, ker pa so se v omrežju malo verjetne, bi lahko te analize nadgradili z upoštevanjem dejstva, da so napredne električne polnilnice sposobne prilagajati moč polnjenja glede na obremenjenost omrežja. Podobna analiza je bila narejena v nacionalni študiji [24], kjer so na generičnem omrežju analizirali omrežje pri nadzorovanem in nenadzorovanem polnjenju električnih avtomobilov. Pri analizah smo ugotovili, da za analize večjega števila obratovalnih stanj z veliko podatki in upoštevanjem določene dinamike, Gredos ni toliko uporaben, ker se porabi preveč časa za vnašanje in izvažanje podatkov.
Literatura

