Univerza v Ljubljani

Fakulteta za elektrotehniko

Marjan Dolinšek

DETEKTOR KOVIN

Z MIKROKRMLNIKOM

Diplomsko delo visokošolskega strokovnega študija

Mentor: prof. dr. Andrej Žemva

Ljubljana, 2018
Zahvala

Zahvalil bi se rad vsem profesorjem in asistentom na FE, saj so v treh letih poskrbeli za odlično izpeljan učni program. Za podporo pri diplomski nalogi se zahvaljujem mentorju prof. dr. Andreju Žemvi, mojim staršem, ki so mi študij omogočili ter mi tekom njega stali ob strani.

Prav tako bi se zahvalil vsem prijateljem, ki so mi kakorkoli pomagali in me spodbujali.
Vsebina

1 Uvod 5
 1.1 Zgodovina detektorjev ... 6

2 Principi delovanja 9
 2.1 Detektor BFO .. 10
 2.2 Detektor IB .. 11
 2.3 Detektor PI .. 12

3 Elementi detektorja 15
 3.1 Mikrokrmilnik ATmega 324PA .. 15
 3.2 Zaslon HD44780 ... 17

4 Delovanje 18
 4.1 Krmilni del .. 18
 4.2 Zajemalni del .. 19
 4.3 Napajalni del .. 21
 4.4 Programski del .. 22

6 Izdelava 27
 6.1 PCB .. 27
 6.2 Iskalna tuljava .. 28
 6.3 Konstrukcija .. 29

7 Zaključek 30

8 Viri 32
Kazalo slik

Slika 1 Detektor podjetja Minelab [2] ... 5
Slika 2 Faradayev eksperiment [3] ... 6
Slika 4 Detektor »two box« [5] .. 8
Slika 5 Blokovna zgradba detektorja BFO .. 10
Slika 6 Prikaz magnetnega polja .. 11
Slika 7 Blokovna shema detektorja IB .. 11
Slika 8 Blokovna shema detektorja PI ... 12
Slika 9 Napetost na tuljavi .. 13
Slika 10 Okrepljen signal .. 13
Slika 11 Mikrokrmilnik na plošči .. 15
Slika 12 Blokovna zgradba mikrokrmilnika [7] .. 16
Slika 13 Zaslon na Mišku .. 17
Slika 14 Shema vzbujalnega dela .. 19
Slika 15 Shema ojačevalnega dela .. 20
Slika 16 Napajalni del ... 21
Slika 17 Odsek kode menija ... 22
Slika 18 Blokovni diagram menija ... 23
Slika 19 Koda za nastavitev števila vzorcev .. 24
Slika 20 Koda za zajemanje ... 25
Slika 21 Blokovni diagram zajemanja ... 26
Slika 22 PCB vezje .. 27
Povzetek

V diplomskem delu je predstavljen razvoj detektorja kovin, ki bazira na mikrokrmilniku Atmega 324 PA iz družine AVR. Krmilniki iz te družine so zaradi preproste uporabe velikokrat uporabljeni v vgrajenih sistemih.

Predstavljen detektor deluje z zaporednim vzbujanjem iskalne tuljave ter merjenjem prejetega odziva. To počne s pravokotnim signalom frekvence 9 kHz. Tip detektorja se imenuje pulse induction detector. Ima možnost spreminjanja parametrov delovanja s pomočjo zaslona LCD in štirih tipk. Nastavimo lahko občutljivost, število izmerjenih vzorcev, osvetlitev ter zvočno informacijo.

Opisano je programsko in strojno delovanje predstavljenega detektorja. Predstavljen je tudi zgodovinski razvoj detektorjev, posamezni tipi ter njihovo delovanje.

Ključne besede: detektor kovin, mikrokrmilnik, AVR
Abstract

This thesis describes the development of metal detector based on ATmega324PA, microcontroller from AVR family. Microcontrollers from this family are user friendly and because of that, often used in embedded systems.

Presented detector works by successively energizing search coil and measuring resulting voltage. Energizing is done with square wave at a frequency of 9 kHz. This type of detector is named pulse induction detector. It has ability to set and change working parameters with LCD screen and four push buttons. It is possible to set sensitivity, number of samples, back light and audio information.

This thesis includes description of software and hardware operation of the detector. The history, types of detectors and their operation are also described.

Key words: metal detector, microcontroller, AVR
1 Uvod

Ročni detektor običajno sestavljajo držalo, iskalna sonda ter kontrolna enota. Uporablja se tako, da ga držimo v roki in z zamahi roke preiščemo tla. Ob zaznavi kovine nam detektor to sporoči s piskanjem ali grafičnim prikazom na zaslonu. Največkrat se naprava uporablja v kombinaciji s slušalkami.

![Detektor Minelab](image1.jpg)

Slika 1 Detektor podjetja Minelab [2]
1.1 Zgodovina detektorjev

Razvoj detektorjev skozi zgodovino je povezan z razvojem elektronike in poznavanjem elektromagnetnega polja. Prvi povezavo med električnim tokom in magnetnim poljem je odkril danski fizik in kemik Hans Christian Øersted. To povezavo je naknadno raziskal Michael Faraday.

Z eksperimenti je ugotovil in dokazal, da se v kosu zvite žice oz. tuljavi inducira tok, če nanjo vpliva premikajoče se magnetno polje. Spoznal je tudi, da se v tuljavi inducira tok, če se ta premika, magnetno polje pa ostaja statično. Električni tok, ki se inducira v tuljavi, ustvari lastno magnetno polje okoli nje. To magnetno polje je nasprotno od prvega in deluje zaviralno. To delovanje se izkorišča pri vseh detektorjih kovin [1].

Slika 2 Faradayev eksperiment [3]
1.1 Zgodovina detektorjev

Slika 3 Graham Bell ob Jamesu Garfieldu [4]
1.1 Zgodovina detektorjev

Leta 1931 je Fischer zapustil službo v mornarici ter odprl svoje podjetje Fisher Research Laboratory v katerem je razvijal komercialne detektorje. Zgodnji modeli so bili znani kot »two box locators«, njihova značilnost pa je ta, da vsebujejo dve tuljavi, ki sta postavljeni pravokotno. Zaradi take postavitve lahko izkoriščata princip induktivne sklopljenosti [1].

Slika 4 Detektor »two box« [5]
2 Principi delovanja

Detektorji kovin se med seboj razlikujejo po načinu delovanja. Osnova vsakega detektorja je iskalna sonda, ki je običajno sestavljena iz ene ali več tuljav. Vsak tip detektorja ima svoje prednosti ter pomanjkljivosti.

Najpogostejši trije tipi so: BFO, IB ter PI. Kratice črk pomenijo beat frequency oscillator, induction balance ter pulse induction detektor. To bi lahko prevedli kot frekvenčno diferenčni detektor, induktivno uravnotežen detektor ter pulzno indukcijski detektor. Posamezni tipi se razlikujejo po maksimalni globini detekcije, možnosti diskriminacije ter dozvetnost na zunanje motnje, kot so na primer minerali v zemlji.

Prednosti pulzno indukcijskega detektorja so predvsem v njegovi globini detekcije, a pri tem težko razlikuje med posameznimi kovinami. Indukcijsko uravnoteženi detektor lahko razlikuje med posameznimi kovinami, ampak je njegov doseg manjši. Frekvenčno diferenčni detektor je enostaven za izgradnjo in razlikuje med feromagnetnimi ter neferomagnetnimi kovinami. Kljub temu pa se v praksi najpogosteje izkaže kot najslabši [1][6].
2.1 Detektor BFO

Princip BFO se v današnjih časih uporablja predvsem v napravah nižjega cenovnega range, največkrat kot igrač ali vstopni model detektorja. Srce takega detektorja sta dva oscilatorja, ki delujeta pri frekvenci okoli 100 kHz. Prvi oscilator uporablja zunanj iskalno tuljavo kot aktivni element oscilatorja. Drugi, notranji, pa za svoje delovanje uporablja manjšo notranjo tuljavo. Temu oscilatorju rečemo tudi referenčni oscilator. Frekvenci obeh oscilatorjev se v mešalniku združita, pri tem pa dobimo seštevek in razliko obeh signalov. Ko se iskalna tuljava približa kovini, se spremeni frekvenca oscillatorja in s tem razlika frekvenc. Spremembo slišimo na zvočniku kot piskajoč zvok, ki se s približevanjem kovine dviga v frekvenci.

Slika 5 Blokovna zgradba detektorja BFO

Za primer naj bo frekvenca referenčnega oscillatorja 100.0 kHz ter prvega oscillatorja 101.0 kHz. Pri teh pogojih bomo iz mešalnika dobili seštevek 201.0 kHz ter razliko 1kHz. Ko pride signal čez nizkopasovni filter, se višja frekvenca odstrani, dobimo pa signal, ki je v slišnem območju 1 kHz. Nato potrebujemo signal le še ojačiti [1].
2.2 Detektor IB

Princip indukcijskega ravnovesa je uporabljen pri skoraj vseh modernih izvedbah detektorjev. Princip delovanja je razmeroma enostaven. Iskalna glava vsebuje par tuljav, oddajno in sprejemno. Tuljavi sta medsebojno indukcijsko uravnoteženi tako, da se v mirovnem stanju (brez prisotnosti kovine) na sprejemno tuljavo ne inducira napetost. To se zgodi le na določeni medsebojni oddaljenosti oz. na položaju tuljav, ko sta magnetna fluksa nasprotna in v ravnotežju.

![Diagram](image)

Slika 6 Prikaz magnetnega polja

V trenutku, ko v bližino pride kos kovine, se ravnotežje poruši. To povzroči, da se inducirana napetost spremeni. Iz medsebojnega faznega kota pa lahko razberemo za katero vrsto kovine gre [1].

![Diagram](image)

Slika 7 Blokovna shema detektorja IB
2.3 Detektor PI

Ta tip detektorja se od ostalih loči v tem, da deluje v časovni domeni in ne v frekvenčni. Pri ostalih detektorjih se namreč uporablja konstanten sinusoidni signal. Pri pulzno indukcijskem detektorju pa iskalno tuljavo vzbujamo s pravokotnim, pulzno širinsko moduliranim signalom. Kot pri ostalih detektorjih, izkorišča vrtinčne tokove, ki se pojavijo v kovini, ko nanjo deluje magnetno polje. Vrtinčni tokovi so večji, če je sprememba magnetnega polja hitrejša. Iz tega lahko sklepamo, da bo pravokoten signal ustvaril večje magnetno polje kot sinusni [1].

Detektor deluje tako, da pri stalni frekvenci, približno 10 kHz, vzbuja iskalno tuljavo. Vzbujalni signal je največkrat pravokoten. V prvem delu se v tuljavi z naraščajočim tokom ustvari krožno magnetno polje. V drugem delu pa se vzbujanje prekine. Zaradi nakopičene energije v magnetnem polju se napetost na tuljavi obrne ter močno zraste. To povzroči napetostne konice v vrednosti več kot 100 V. Hitrost pojemanja te napetosti je odvisna od induktivnosti, ki se s prisotnostjo kovine spreminja. Sprememba se zazna v primerjalniku v katerega je pripeljan okrepljen del napetosti. Z zaporednim primerjanjem se razlika v napetosti odraža kot zvočni signal v zvočniku.

Slika 8 Blokovna shema detektorja PI
2.3 Detektor PI

Na sliki 9 je razviden potek napetosti na tuljavi. Napetostne konice segajo do 138 V. Okrepljen signal na sliki 10 je izmerjen na vhodu AD pretvornika.

Slika 9 Napetost na tuljavi

Slika 10 Okrepljen signal
3 Elementi detektorja

3.1 Mikrokrmilnik ATmega 324PA

Pri izdelavi detektorja smo se odločili za AVR, ATmega 324PA [7], ker imamo z njim že kar nekaj izkušenj, saj smo ga uporabljali v sklopu predmeta Osnove mikroprocesorske elektronike. Bil je namreč del razvojnega kompleta Miško [9], s katerim smo spoznali osnove programiranja v programskem jeziku C.

ATmega 324PA je 8-bitni mikrokrmilnik iz družine AVR, ki bazira na arhitekturi ukazov RISC (reduced instruction set). Z imena lahko razberemo, da vsebuje 32 KB spomina FLASH ter 4 KB spomina EEPROM. Pod periferijo pa lahko naštejemo še 32 splošno uporabnih vhodno-izhodnih linij, 32 splošnih delovnih registriv, časovnik realne ure, tri časovnike, priključek USART, 8-kanalni 10-bitni ADC, serijski port SPI, priklop JTAG ter šest programsko nastavljivih načinov delovanja za zmanjšanje električne porabe [7].

Slika 11 Mikrokrmilnik na plošči
Mikrokrmilnik je osnovan na principu harvardske arhitekture. To pomeni, da ima ločene signalne poti za program in podatke. Ukazi se izvajajo enonivojsko. Ko se trenutna inštrukcija izvaja, se iz programskega spomina nalaga naslednja. Ta koncept omogoča, da se ukazi izvajajo vsak urin cikel.

Programski spominski prostor FLASH je razdeljen na dva dela. Prvi del je uporabljen za kodo, ki se izvede ob zagonu in je potrebna za pravilno delovanje, drugi pa za izvajanje programske kode naloženega programa. Oba dela imata opcijo zaklepa branja in pisanja kode [7].

Slika 12 Blokovna zgradba mikrokrmilnika [7]
3.2 Zaslon HD44780

Zaslon HD44780 smo uporabili, ker je preprost za uporabo in je zanj na voljo veliko dokumentacije. Prav tako je bil uporabljen v Mišku, zato smo z njegovim delovanjem že seznanjeni.

Slika 13 Zaslon na Mišku
4 Delovanje

4.1 Krmilni del

Iskalno tuljavo krmimo s pravokotnimi pulzi. Signal je fazno moduliran in ima frekvenco 9 kHz. Najprej signal vstopi v bazo tranzistorja NPN, BC817 [13]. Tranzistor deluje kot ojačevalnik z skupnim emitorjem. Okrepljen signal je pripeljan na vrata tranzistorja MOSFET, IRF9630 [11]. Ponor n-kanalnega tranzistorja MOSFET je priključen direktno na napajalno napetost 8 V, saj želimo na tuljavo pripeljati čim večjo napetost. Večja napetost bo na tuljavi ustvarila večji tok in s tem večje magnetno polje, katero je pomembno za boljšo detekcijo. Upori R4, R11, R12 in R13 so v vezju zato, da zadušijo nihanje napetosti na tuljavi, ko se z izklopom magnetno polje na njej poruši. Ti upori so vezani vzporedno ter zaporedno zato, da se poveča moč, ki se ob dušenju sprošča na njih. Deklarirana moč posameznega upora je 0.75 W, skupna pa 3 W. Njihova posamezna ter skupna upornost je 470 Ω. Upori so tipa SMC, velikosti 2010, po empirični notaciji, ter tolerance 0.1 %. Vsi ostali upori so velikosti 0805 ter tolerance 1 %.
4.2 Zajemalni del

Slika 14 Shema vzbujalnega dela
Ojačevalnik je sestavljen iz dveh stopnj. Pri tem je ojačenje prve fiksno, ojačenje druge pa lahko nastavljamo ločeno s trimerjem, ki se nahaja na vezju. Obe ojačevalni stopnji sta neinvertirajoči. Napetostno ojačenje prve je 100, ojačenje druge pa je nastavljivo, zvezno, od nič do devet. Skupaj to znese maksimalno 900 oz. 59 dB.

Na izhodu je dodan še nizko pasovni filter prvega reda z mejno frekvenco 159 kHz, ki pripomone k znižanju šuma na vhodu pretvornika.

Slika 15 Shema ojačevalnega dela
4.3 Napajalni del

Detektor se napaja z osmimi baterijami tipa AA. Posamezna baterija ima napetost 1.5 V. Vezane so zaporedno, njihova skupna napetost pa je 12 V. Baterije so povezane na stikalni pretvornik tipa »buck-boost«, kateri ima izhodno napetost nastavljeno na 8 V. Ta napetost se uporabi za krmiljenje tuljave, ojačevalnik in kot vhodno napetost regulatorja.

Za napajanje mikrokrmlnika je potrebna napetost 5 V. To dobimo z linear nim napetostnim regulatorjem LT323AT [12]. Vhodna napetost regulatorja je 8 V. Regulator ima na vhodu in izhodu kondenzatorje, potrebne za glajenje napetosti ter preprečevanje oscilacij. Kondenzatorji so iz istega razloga uporabljeni tudi ob mikrokrmlniku ter operacijskem ojačevalniku.

Slika 16 Napajalni del
4.4 Programski del

Opis programskega delovanja detektorja smo razdelili v dva pomembnejša sklopa. To sta delovanje menija ter zajemalni del.


```c
while (1)
{
    if((FIND & tipka_1) == 0)
    {
        st_podmenija++;
        if(st_podmenija == 6)
        {
            st_podmenija = 1;
        }
        kratek_pisk();
        _delay_ms(200);
        LCD_ClrScr();
    }
    if(st_podmenija == 1)
    {
        LCD_GotoXY(0,0);
        printf("-- Delovanje --");
        while(FIND & tipka_1)
        {
            delovanje();
        }
    }
}
```

Slika 17 Odsek kode menija
Slika 18 Blokovni diagram menija
4.4 Programski del

V prvem podmeniju se izvaja normalno delovanje detektorja, ki je opisano v nadaljevanju. Ostali podmeniji so namenjeni nastavitvi parametrov. Z nastavitvijo odstopanja dosežemo višjo ali manjšo občutljivost na spremembe. To nastavimo z dvema tipkama, ki vrednost spreminjata navzgor ali navzdol. Če z nastavitvijo pridemo do vrednosti 0, se možnost nadaljnega nižanja ustavi. Tak sistem je uporabljen v vseh podmenijih.

Pri nastavitvi števila vzorcev nastavimo število posameznih meritev. Vzorce merimo na treh točkah, ki so vezane na vrednost števnega registra TCNT0. Merimo jih pri vrednostih 70, 73 in 76. Spreminjanje tega parametra vpliva na odzivnost, saj se čas skupnega zajemanja povečuje s številom zajetih vzorcev.

V četrtem podmeniju nastavimo širino pulzno moduliranega signala, ki vzbuja iskalno tuljavo. Ta nastavitev vpliva na globino zaznavanja, saj se z daljšim vzbujanjem vzpostavi večje magnetno polje. Poveča se tudi poraba energije.

```c
if(st_podmenija == 3) //St. vzorcev
{
    LCD_GotoXY(0,0);
    printf("<St.Vzorcev >>");
    LCD_GotoXY(0,1);
    printf_double(stevilo_vzorcev);

    if((PIND & tipka_2) == 0 && (stevilo_vzorcev > 1))
    {
        stevilo_vzorcev -= 1;
        reset_stetje();
        _delay_ms(50);
    }
    else if((PIND & tipka_3) == 0)
    {
        stevilo_vzorcev += 1;
        reset_stetje();
        _delay_ms(50);
    }
}
```

Slika 19 Koda za nastavitev števila vzorcev
4.4 Programski del

V podmeniju delovanja se izvaja normalno delovanje detektorja. V tem načinu se program nahaja večino časa.

Ko program pride v podmeni delovanje, se najprej izvede ponastavitev vseh stanj. Ponastavijo se števki za štetje posameznih meritev, prav tako pa se na nič postavijo tudi vrednosti izmerjenih meritev. Na začetku program preveri ali so zbrani vsi vzorci. Če vsi vzorci še niso zbrani, se program vrti v zanki, dokler ne zbere vseh. To počne tako, da najprej preveri, če ima števec TCNT0 vrednost 70. Če ima števec to vrednost, program izvede meritev na prvi točki. Ko so izvedene vse meritve v prvi točki, program nadaljuje z meritvami na drugi in tretji točki. Rezultati teh meritev se posamično seštevajo.

```c
while(stetje1 < stvilo_vzorcev)
{
  if(TCNT0 == 70)
  {
    ADCSRA|=1<ADSC>; // start conversion
    while(ADCSC & (1<ADIF)); // wait for complete
    meritev1 = meritev1 + (A0CL >> 6 | ADCM << 2); // store
    ADCSRA|=1<ADIF>; // clear ADIF flag
    stetje1++;  
  }
}

while(stetje2 < stvilo_vzorcev)
{
  if(TCNT0 == 73) //73
  {
    ADCSRA|=1<ADSC>; // start conversion
    while((ADCSC & (1<ADIF))); // wait for complete
    meritev2 = meritev2 + (A0CL >> 6 | ADCM << 2); //store
    ADCSRA|=1<ADIF>; // clear ADIF flag
    stetje2++; 
  }
}

while(stetje3 < stvilo_vzorcev)
{
  if(TCNT0 == 76) //76
  {
    ADCSRA|=1<ADSC>; // start conversion
    while((ADCSC & (1<ADIF))); // wait for complete
    meritev3 = meritev3 + (A0CL >> 6 | ADCM << 2); //store
    ADCSRA|=1<ADIF>; // clear ADIF flag
    stetje3++;  
  }
}
```

\[Slika 20 Koda za zajemanje \]
Ko so zbrane vse meritve, se naredi preračun. Skupna vsota posameznih meritev se deli s številom izvedenih meritev. Tako dobimo srednjo vrednost posamezne točke. Te vrednosti se odštejejo od vrednosti posamezne točke, ki je bila določena že ob zagonu. Absolutna vrednost razlike se nato primerja z nastavljenim odstopanjem. Ničelno vrednost, ki se jo uporabi pri preračunu, se lahko tudi ročno popravi oz. nastavi s pritiskom tipke med samim delovanjem. Paziti je potrebno le, da v bližini tuljave takrat ni kovinskih predmetov.

Slika 21 Blokovni diagram zajemanja
6 Izdelava

6.1 PCB

Za izdelavo vezja PCB smo uporabili program DipTrace, ki je z nekaj omejitvami prosto dosegljiv na internetu. V vezju smo večinoma uporabili elemente tipa SMC.

Slika 22 PCB vezje
6.2 Iskalna tuljava

Iskalna tuljava je zgrajena iz dveh koncentrično postavljenih tuljav. Zunanja oddajna tuljava ima premer 23 cm, notranja sprejemna tuljava pa 17 cm. Obe sta narejeni iz enamelirane bakrene žice, premera 0.5 mm. Zunanja tuljava ima 25 ovojev, njena induktivnost znaša 630 µH. Notranja tuljava ima 30 ovojev, njena induktivnost pa je 450 µH.

Prednost take konfiguracije tuljav je v tem, da je druga tuljava električno izolirana od prve. To pomeni, da jo lahko priklopi v poljubno točko v vezju in s tem določimo njen potencial. Pri tem pa ne moti delovanja ostalih elementov.

Slika 23 Iskalna tuljava
6.3 Konstrukcija

Kot glavni del konstrukcije detektorja kovin smo uporabili cev PVC premera 3.2 cm. Držalo je narejeno v obliki črke »S« za lažje držanje v roki. Nosilec smo na začetku ukrivili s segrevanjem, a se je izkazalo, da je kot krivljenja prevelik in da se cev ob prelomu strga ter nagrbanči. Namesto tega smo uporabili dve koleni, kar se je izkazalo kot boljša rešitev.

Vezje smo vgradili v plastično ohišje dimenzij 12 cm x 8 cm x 5 cm. Predhodno smo izvrtali luknje za priklope ter pripravili odprtino za zaslon LCD. Škatlica je na nosilo pritrjena z dvema vijakoma dimenzije M4 tako, da lahko z njo upravljamo med držanjem. Na konec okvirja smo pritrdirili ločeno plastično ohišje, ki vsebuje 8 baterij tipa AA, stikalo za vklop ter stikalni pretvornik.

Slika 24 Celotni detektor
7 Zaključek

V pričujočem diplomskem delu je predstavljen zgodovinski pregled ter razvoj detektorja kovin in njegovih sestavinih delov. Cilj diplomske naloge je bila izdelava pulzno indukcijskega detektorja z mikrokrmilnikom.

Naš končni izdelek deluje zadovoljivo in je v marsičem celo presegel naša pričakovanja. Kovanec za 1 cent zazna pri razdalji 10 cm, kovanec za 2 € pa pri 15 cm. Vseeno pa se problem pokaže v času, ki ga detektor porabi za stabiliziranje delovanja. Predvidevamo, da je za to krivo temperaturno odstopanje vrednosti komponent.

Za izboljšano delovanje bi lahko uporabili mikrokrmilnik z boljšim ter hitrejšim gradnikom ADC. Za referenčno napetost pri ADC pa bi uporabili specializiran čip.

Ogrodje je zaradi uporabe cevi PVC nekoliko preveč mehko. Za večjo togost bi pri izdelavi detektorja lahko uporabili cev iz tršega materiala.
8 Viri

http://www.minelab.com/metal-detectors/treasure-detectors/e-trac
[Dostopano: 8.11.2017]

[Dostopano: 8.11.2017]

[Dostopano: 8.11.2017]

[Dostopano: 17.4.2018]

https://en.wikipedia.org/wiki/Metal_detector
[Dostopano: 8.3.2018]
[Dostopano: 8.3.2018]

[8] Zaslon HD44780 [Online]
https://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller
[Dostopano: 8.3.2018]

http://lpvo.fe.uni-lj.si/izobrazevanje/1-stopnja-vs/osnove-mikroprocesorske-elektronike-ome/misko-v1/
[Dostopano: 22.3.2018]

[Dostopano: 22.3.2018]

https://www.vishay.com/docs/91084/sihf9630.pdf
[Dostopano: 22.3.2018]

http://www.linear.com/product/LT323A
[Dostopano: 22.3.2018]

http://www.onsemi.com/pub/Collateral/BC817-40W-D.PDF
[Dostopano: 11.4.2018]