Raziskujemo relacije med komutatorji v abstraktnih grupah. Med njimi izpostavimo univerzalne relacije, ki so zgolj posledice algebraičnih manipulacij. Osredotočimo se na komutatorske relacije, ki niso take. Te pristno netrivialne neuniverzalne komutatorske relacije je mogoče zbrati v abelovo grupo, imenovano multiplikator Bogomolova. Ta objekt ima tukaj osrednjo vlogo. Še posebej nas zanima vprašanje njegove trivialnosti in posedovanje nekakšnega nadzora nad njegovim obnašanjem. V disertaciji predstavimo razne vidike tega. Po krajšem pregledu motivacije za študij multiplikatorja Bogomolova raziščemo nekaj njegovih osnovnih lastnosti. Podamo mnogo primerov grup s trivialnimi in netrivialnimi multiplikatorji Bogomolova ter prikažemo različne metode. Predstavimo kohomološko interpretacijo multiplikatorja Bogomolova, s čimer vzpostavimo povezavo med komutatorskimi relacijami in razširitvami grup, ki ohranjajo komutativnost. Multiplikator Bogomolova je univerzalen objekt, ki parametrizira takšne razširitve dane grupe. Razvijemo teorijo krovnih grup. Te konstrukcije uporabimo za izgradnjo učinkovitega algoritma za računanje multiplikatorjev Bogomolova končnih rešljivih grup. Nadalje raziščemo grupe, ki so minimalne glede na posedovanje neuniverzalnih komutatorskih relacij. Pridobljene rezultate uporabimo za študij problema trivialnosti multiplikatorja Bogomolova iz verjetnostnega vidika. Podamo eksplicitno spodnjo mejo za verjetnost komutiranja, ki zagotovi trivialnost multiplikatorja Bogomolova. Izpeljemo relativne strukturne meje v zvezi z multiplikatorjem Bogomolova. Verjetnost komutiranja povežemo z razširitvami, ki ohranjajo komutativnost, s čimer omejimo multiplikator Bogomolova v odvisnosti od verjetnosti komutiranja dane grupe. Nazadnje izkoristimo še eno znano pojavitev multiplikatorja Bogomolova, da podamo negativen odgovor na Isaacsovo domnevo o stopnjah karakterjev končnih grup, ki izhajajo iz nilpotentnih asociativnih algeber. Domnevi se približamo z grupami, ki izhajajo iz modularnih grupnih kolobarjev. Za opaženo neregularnost ponudimo tudi bolj konceptualno razlago z vidika algebraičnih grup. Pokažemo, da lahko elemente multiplikatorja Bogomolova vidimo kot racionalne točke na neki komutatorski raznoterosti.
|