C. Neumann system describes the motion of a particle on the sphere ▫$S^n$▫ under the influence of a quadratic potential ▫$U(q_1, \ldots, q_{n+1}) = \sum a_jq_j^2$▫. The Neumann system is completely Liouville integrable. First integrals in involution are well known Uhlenbeck's integrals. In addition, the complex Neumann system is completely algebraically integrable and the regular level sets of the complex momentum map are affine parts of complex tori. In the dissertation, we precisely define real forms of the complex Neumann system. We obtain new Hamiltonian systems on the cotangent bundles of hyperboloids. We prove that the real forms are completely integrable Hamiltonian systems and write down their first integrals (conserved quantities). The complex Neumann system is an example of the more general Mumford system. The Mumford system is characterized by the Lax equation ▫$\frac{d}{dt}L^{\mathbb{C}}(\lambda) = [M^\mathbb{C}(\lambda), L^\mathbb{C}(\lambda)]$▫ in the loop algebra ▫$\mathfrak{sl}(2, \mathbb{C})[\lambda, \lambda^{-1}]$▫. Coefficients ▫$U^\mathbb{C}$▫, ▫$V^\mathbb{C}$▫, ▫$W^\mathbb{C}$▫ of the matrix ▫$L^\mathbb{C}(\lambda)$▫ are suitable polynomials. If ▫$u_1, \ldots, u_n$▫ are roots of the appropriate real form of the polynomial ▫$U^\mathbb{C}$▫, the topology of a regular level set of the moment map of the real form is determined by the positions of the roots ▫$u_1, \ldots, u_n$▫ with respect to the constants ▫$a_1, \ldots, a_{n+1}$▫ and to the suitable parameters of the system. For two families of the real forms of the complex Neumann system, we describe the topology of the regular level set of the moment map. For one of these two families the level sets are noncompact. We observe that in some special cases the roots of a real form of the polynomial ▫$U^\mathbb{C}$▫ determine coordinates on a suitable hyperboloid. We define conical hyperboloidal coordinates on equiaxed hyperboloids and they can be interpreted as a generalization of the Jacobian elliptic spherical coordinates on ▫$S^n$▫. Since the Neumann system has another Lax equation in the loop algebra ▫$\mathfrak{sl}(n+1, \mathbb{R})[\lambda, \lambda^{-1}]$▫, there exists another family of the first integrals in involution. In the dissertation, we also give the formula which provides the relation between this family and the family of Uhlenbeck's integrals.
|