izpis_h1_title_alt

Statistično strojno prevajanje iz angleščine v slovenščino s sistemom Moses
ID KUNTARIČ, SAŠO (Avtor), ID Robnik Šikonja, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Krek, Simon (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,50 MB)
MD5: 45D570452B16920D350A67BB8B366964
PID: 20.500.12556/rul/d619a15f-fcd8-45b3-b8ae-f04bb074b026

Izvleček
Cilj diplomske naloge je prilagoditev sistema Moses za statistično strojno prevajanje iz angleščine v slovenščino. Strojno prevajanje je področje računalniške lingvistike, ki raziskuje uporabo programske opreme za prevajanje besedila iz enega jezika v drugega. Faktorsko statistično strojno prevajanje je podaljšek statističnega, pri katerem besedilu dodamo jezikovne oznake na ravni besed in jih spremenimo v vektorje. Tako želimo izboljšati kakovost dobljenih prevodov. Za odprtokodni prevajalnik Moses smo iz jezikovnega korpusa z besedili s področja informacijskih tehnologij ustvarili več faktorskih jezikovnih in prevajalnih modelov. Z njimi smo prevedli dve besedili s področja informacijskih tehnologij. Prvo je usmerjeno tržno in ima kompleksnejše zgradbo, drugo pa je bolj tehnične narave. Prevode, ki smo jih dobili, smo na dva načina primerjali med seboj ter z dvema neodvisnima človeškima prevodoma in s prevodom, ki smo ga ustvarili s storitvijo Google Translate. Za prvo primerjavo smo uporabili algoritem BLEU, za drugo pa so prevode pregledali človeški pregledovalci in podali subjektivno oceno, ki je pri prevajanju še vedno zelo pomembna. V zaključku smo si ogledali zanesljivost ocenjevalcev in analizirali rezultate ocenjevanja. Ugotovili smo, da so naši modeli primernejši za tehnična besedila, prehod na faktorske modele pa bolj vpliva na prevajanje kompleksnejših besedil.

Jezik:Slovenski jezik
Ključne besede:statistično strojno prevajanje, faktorsko strojno prevajanje, sistem Moses, jezikovni korpus, jezikovni model, prevajalni model, BLEU, evalvacija, Google Translate
Vrsta gradiva:Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2016
PID:20.500.12556/RUL-91211 Povezava se odpre v novem oknu
Datum objave v RUL:24.03.2017
Število ogledov:3229
Število prenosov:447
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Statistical machine translation from English to Slovene using Moses system
Izvleček:
The aim of the thesis is to customise the Moses system for statistical machine translation from English to Slovenian. Machine translation is a field in computational linguistics that explores the use of software to translate text from one language to another. Factorised statistical translation is an extension of statistical machine translation, where language tags are added on the word level. Words are turned into vectors in an attempt to improve the translation quality. For the open-source machine translation system Moses we created multiple factorised language and translation models from a language corpus, containing IT-related texts. We translated two different IT-based documents. First one was marketing-orientated with a complex structure, while the second one was technical and straight-forward. We used two methods to compare the generated translations, two independent human translations and a translation, created by the Google Translate service. In the first comparison we used the algorithm BLEU and in the second comparison the translations were marked by human reviewers, who expressed a subjective score, which is very important in the translation field. In conclusion we calculated the inter-rater coherence and analysed the results. We discovered that our models were more suitable for technical texts, however switching to factorised models affects complex texts more.

Ključne besede:statistical machine translation, factorised machine translation, Moses system, language corpus, language model, translation model, BLEU, human evaluation, Google Translate

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj