izpis_h1_title_alt

Transkripcija klavirske glasbe z globokim učenjem : diplomsko delo
ID Jug, Jan (Avtor), ID Marolt, Matija (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (957,05 KB)
MD5: D981E098A83102A9B8C20DDE41F91C9A
PID: 20.500.12556/rul/75a61762-3c97-47c3-990a-a1ab5802f5f7

Izvleček
Transkripcija glasbe je zahteven postopek simboličnega zapisa glasbenega posnetka. Cilj tega diplomskega dela je bila preučitev transkripcije klavirske glasbe z metodami globokega učenja, za kar so bili implementirani in preizkušeni trije modeli globokih nevronskih mrež: večnivojski perceptron, konvolucijska nevronska mreža in globoka verjetnostna mreža. Z modelom globoke verjetnostne mreže je bilo preizkušeno nenadzorovano predučenje, katerega namen je izluščenje glasbenih značilnosti iz zvočnega signala. Učenje modelov in preverjanje končne uspešnosti transkripcije je bilo izvedeno na zbirki za transkripcijo klavirske glasbe MAPS. Izvedena je bila tudi primerjava predpriprave podatkov s transformacijama hitre Fourierove transformacije in transformacije s konstantnim Q. Končni rezultati so pokazali, da je globoko učenje s pravim učnim načrtom lahko močno orodje za transkripcijo glasbe.

Jezik:Slovenski jezik
Ključne besede:avtomatična transkripcija glasbe, globoke nevronske mreže, klavirska glasba, globoko učenje, večnivojski perceptron, konvolucijska nevronska mreža, globoka verjetnostna mreža, hitra Fourierova transformacija, transformacija s konstantnim Q
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Založnik:[J. Jug]
Leto izida:2015
Št. strani:43 str.
PID:20.500.12556/RUL-72190 Povezava se odpre v novem oknu
COBISS.SI-ID:1536477635 Povezava se odpre v novem oknu
Datum objave v RUL:08.09.2015
Število ogledov:1862
Število prenosov:574
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Transcription of piano music with deep learning
Izvleček:
Transcription of music is a complex process of transcribing an audio recording into a symbolic notation. The goal of this thesis was to examine transcription of piano music with deep learning, for which three models of deep neural networks were implemented: multilayer perceptron, convolutional neural network and deep belief network. Through the use of deep belief network, unsupervised pretraining for automatic extraction of musical features from audio signals was also tested. Learning of these models and evaluation of transcription was performed with MAPS database for piano music transcription. A comparison between Fast Fourier Transform and Constant Q Transform for data pre-processing was also carried out. Final results show that deep learning with an appropriate learning schedule is potentially a powerful tool for automatic transcription of music.

Ključne besede:automatic music transcription, deep neural networks, piano music, deep learning, multilayer perceptron, convolutional neural network, deep belief network, Fast Fourier Transform, Constant Q Transform

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj