Podrobno

Hierarchical clustering with concave data sets
ID Francetič, Matej (Avtor), ID Nagode, Mateja (Avtor), ID Nastav, Bojan (Avtor)

URLURL - Predstavitvena datoteka, za dostop obiščite http://mrvar.fdv.uni-lj.si/pub/mz/mz2.1/abst/francetic.htm Povezava se odpre v novem oknu

Izvleček
Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the furthest neighbour, Ward's method, between-groups linkage, within-groups linkage, centroid and median clustering. The goal is to assess the performanceof different clustering methods when using concave sets of data, and also to figure out in which types of different data structures can these methods reveal and correctly assign group membership. The simulations were runin a two- and three-dimensional space. Using different standard deviations of points around the skeleton further modified each of the two original shapes. In this manner various shapes of sets with different inter-cluster distances were generated. Generating the data sets provides the essential knowledge of cluster membership for comparing the clustering methods? performances. Conclusions are important and interesting since real life data seldom follow the simple convex-shaped structure, but need further work, such as the bootstrap application, the inclusion of the dendrogram-based analysis or other data structures. Therefore this paper can serve as a basis for further study of hierarchical clustering performance with concave sets.

Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FDV - Fakulteta za družbene vede
Založnik:Fakulteta za družbene vede
Leto izida:2005
Št. strani:Str. 173-193
Številčenje:Vol. 2, no. 2
PID:20.500.12556/RUL-61370 Povezava se odpre v novem oknu
UDK:303
ISSN pri članku:1854-0023
COBISS.SI-ID:24314717 Povezava se odpre v novem oknu
Datum objave v RUL:10.07.2015
Število ogledov:1828
Število prenosov:218
Metapodatki:XML DC-XML DC-RDF
:
FRANCETIČ, Matej, NAGODE, Mateja in NASTAV, Bojan, 2005, Hierarchical clustering with concave data sets. Advances in methodology and statistics [na spletu]. 2005. Vol. 2, no. 2, p. 173–193. [Dostopano 20 april 2025]. Pridobljeno s: http://mrvar.fdv.uni-lj.si/pub/mz/mz2.1/abst/francetic.htm
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Advances in methodology and statistics
Skrajšan naslov:Metodol. zv.
Založnik:Fakulteta za družbene vede
ISSN:1854-0023
COBISS.SI-ID:215795712 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
  1. Geografija Lendave
  2. Urbanizacija v Avstraliji
  3. Regionalni razvoj Alenteja
  4. Suburbanizacija Tržiča
  5. Sonaravno življenje Indijancev v Amazoniji
Podobna dela v drugih slovenskih zbirkah:
  1. Vzpostavitev in vrednotenje katastra gospodarske javne infrastrukture
  2. Ecoremediation educational polygons in Slovenia as good examples of experiential learning of geography
  3. Cona Tezno eden od glavnih "igralcev" v mednarodnem projektu
  4. Global value chains and global production networks in Central Eastern Europe

Nazaj