Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Reachability relations in digraphs
ID
Malnič, Aleksander
(
Avtor
),
ID
Marušič, Dragan
(
Avtor
),
ID
Seifter, Norbert
(
Avtor
),
ID
Šparl, Primož
(
Avtor
),
ID
Zgrablić, Boris
(
Avtor
)
URL - Predstavitvena datoteka, za dostop obiščite
http://dx.doi.org/10.1016/j.ejc.2007.11.003
Galerija slik
Izvleček
In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree.
Jezik:
Angleški jezik
Ključne besede:
graph theory
,
digraph
,
reachability relations
,
end of a graph
,
property ▫$\mathbb{Z}$▫
,
growth
Vrsta gradiva:
Delo ni kategorizirano
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
PEF - Pedagoška fakulteta
Leto izida:
2008
Št. strani:
Str. 1566-1581
Številčenje:
Vol. 29, no. 7
PID:
20.500.12556/RUL-45605
UDK:
519.17
ISSN pri članku:
0195-6698
DOI:
10.1016/j.ejc.2007.11.003
COBISS.SI-ID:
2017509
Datum objave v RUL:
10.07.2015
Število ogledov:
1631
Število prenosov:
407
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
European journal of combinatorics
Skrajšan naslov:
Eur. j. comb.
Založnik:
Elsevier
ISSN:
0195-6698
COBISS.SI-ID:
25427968
Sekundarni jezik
Jezik:
Angleški jezik
Ključne besede:
teorija grafov
,
usmerjeni grafi
,
rast
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj