Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Prediction of subsidence due to underground mining by artificial neural networks
ID
Ambrožič, Tomaž
(
Avtor
),
ID
Turk, Goran
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(327,20 KB)
MD5: 6C2B8EA30E7CD97EB8D83B00ECF2DCF5
PID:
20.500.12556/rul/7a5bcf5a-86c0-49c7-ae6b-5b549fc1545a
Galerija slik
Izvleček
Alternatively to empirical prediction methods, methods based on influential functions and on mechanical model, artificial neural networks (ANNs) can be used for the surface subsidence prediction. In our case, the multi-layer feed-forward neural network was used. The training and testing of neural network is based on the available data. Input variables represent extraction parameters and coordinates of the points of interest, while the output variable represents surface subsidence data. After the neural network has been successfully trained, its performance is tested on a separate testing set. Finally, the surface subsidence trough above the projected excavation is predicted by the trained neural network. The applicability of ANN for the prediction of surface subsidence was verified in different subsidence models and proved on actual excavated levels and in levelled data on surface profile points in the Velenje Coal Mine. (C) 2003 Elsevier Science Ltd. All rights reserved.
Jezik:
Angleški jezik
Ključne besede:
artificial neural network
,
subsidence prediction
,
multi-layer feed=forward neural network
,
approximation of functions
,
mining damage
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Založnik:
Elsevier
Leto izida:
2003
Št. strani:
Str. 627-637
Številčenje:
Vol. 29, Vol. 29
PID:
20.500.12556/RUL-32124
UDK:
624.131.5
ISSN pri članku:
0098-3004
DOI:
10.1016/S0098-3004(03)00044-X
COBISS.SI-ID:
1972833
Datum objave v RUL:
10.07.2015
Število ogledov:
4100
Število prenosov:
1225
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Computers & Geosciences
Skrajšan naslov:
Comput. geosci.
Založnik:
Pergamon Press
ISSN:
0098-3004
COBISS.SI-ID:
25264128
Sekundarni jezik
Jezik:
Angleški jezik
Ključne besede:
umetna nevronska mreža
,
napovedovanje ugreznine
,
večslojna usmerjena nevronska mreža
,
aproksimacija funkcij
,
rudarska škoda
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj