Podrobno

Learning with noisy labels [~re]visited
ID Hudovernik, Valter (Avtor), ID Rot, Žiga (Avtor), ID Vovk, Klemen (Avtor), ID Škodnik, Luka (Avtor), ID Čehovin Zajc, Luka (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,74 MB)
MD5: 25DDD9CA7FAADD0A5D7E0DA14F9CD556
URLURL - Izvorni URL, za dostop obiščite https://rescience.github.io/bibliography/Hudovernik_2026.html Povezava se odpre v novem oknu
URLURL - Izvorni URL, za dostop obiščite https://zenodo.org/record/18401497/files/article.pdf Povezava se odpre v novem oknu

Izvleček
Learning with noisy labels (LNL) is a subfield of supervised machine learning investigating scenarios in which the training data contain errors. While most research has focused on synthetic noise, where labels are randomly corrupted, real-world noise from human annotation errors is more complex and less understood. Wei et al. (2022) introduced CIFAR-N, a dataset with human-labeled noise and claimed that real-world noise is fundamentally more challenging than synthetic noise. This study aims to reproduce their experiments on testing the characteristics of human-annotated label noise, memorization dynamics, and benchmarking of LNL methods. We successfully reproduce some of the claims but identify some quantitative discrepancies. Notably, our attempts to reproduce the reported benchmark reveal inconsistencies in the reported results. To address these issues, we develop a unified framework and propose a refined benchmarking protocol that ensures a fairer evaluation of LNL methods. Our findings confirm that real-world noise differs structurally from synthetic noise and is memorized more rapidly by deep networks. By open-sourcing our implementation, we provide a more reliable foundation for future research in LNL.

Jezik:Angleški jezik
Ključne besede:noisy learning, deep learning, repeatability of experiments
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2026
Št. strani:22 str.
Številčenje:Vol. 11, iss. 1, Art. 2
PID:20.500.12556/RUL-179046 Povezava se odpre v novem oknu
UDK:004.85
ISSN pri članku:2430-3658
DOI:10.5281/zenodo.18401497 Povezava se odpre v novem oknu
COBISS.SI-ID:267165699 Povezava se odpre v novem oknu
Datum objave v RUL:04.02.2026
Število ogledov:35
Število prenosov:1
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:The Rescience journal
Založnik:The ReScience journal
ISSN:2430-3658
COBISS.SI-ID:525809177 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:učenje na šumnih podatkih, globoko učenje, ponovljivost eksperimentov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj