Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Dosimetric assessment of deep learning based organ-at-risk segmentation : insights from the HaN-Seg challenge
ID
Podobnik, Gašper
(
Avtor
),
ID
Ibragimov, Bulat
(
Avtor
),
ID
Peterlin, Primož
(
Avtor
),
ID
Strojan, Primož
(
Avtor
),
ID
Vrtovec, Tomaž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,79 MB)
MD5: F79C4DFE50ED1CC12AE9BD8824FBD60D
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0167814026000253
Galerija slik
Izvleček
Background and purpose To extend the previously reported geometric analysis of HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge by integrating a dosimetric evaluation, thereby offering a comprehensive assessment of challenge results with practical insights into their clinical applicability. Materials and methods Participating teams of the HaN-Seg challenge were tasked to auto-segment 30 organs-at-risk (OARs) in the head and neck region using paired contrast-enhanced computed tomography and T1-weighted magnetic resonance images. The teams were ranked according to their geometric performance, measured by the Dice similarity coefficient (DSC) and 95th-percentile Hausdorff distance (HD95). Here, we extend this evaluation with a forward dosimetric analysis, also known as dosimetric impact approximation, including the verification of OAR dosimetric restriction compliance, assessment of OAR priority ratings, evaluation of segmentation performance relative to tumor proximity, and correlation analysis between geometric and dosimetric metrics. Results All six teams from the previous geometric analysis were assessed for dosimetric performance on the original 14 test cases. Dosimetric analysis revealed minor performance differences among teams, with the best- and worst-performing teams achieving dosimetric compliance in 70.7% and 67.7% of OAR auto-segmentations, respectively. Most teams successfully met priority 1 dosimetric restrictions including the spinal cord, brainstem, optic chiasm, and optic nerves in 11 out of 14 test cases. The lowest compliance rates were observed for the oral cavity and submandibular glands. Correlation analysis revealed no clear relationship between geometric and dosimetric metrics. Conclusion The high dosimetric compliance highlights the practical utility of deep learning OAR auto-segmentation methods. Lower compliance for the oral cavity and submandibular glands most probably stems from their proximity to tumors and the corresponding steep dose gradients, where certain dosimetric constraints are inherently challenging to meet in clinical practice, or from the limitations of the forward dosimetric analysis. These findings underpin the critical need for both geometric and dosimetric evaluations of OAR auto-segmentation tools to ensure robust validation. Such a comprehensive assessment will be essential as commercial deep learning tools become increasingly integrated into the radiotherapy planning workflow.
Jezik:
Angleški jezik
Ključne besede:
computational challenge
,
segmentation
,
deep learning
,
organs-at-risk
,
computed tomography
,
magnetic resonance
,
radiotherapy
,
head and neck cancer
,
dosimetric evaluation
,
dosimetric restrictions
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2026
Št. strani:
8 str.
Številčenje:
Vol. 271, art. 111387
PID:
20.500.12556/RUL-178671
UDK:
004.93
ISSN pri članku:
1879-0887
DOI:
10.1016/j.radonc.2026.111387
COBISS.SI-ID:
266164995
Datum objave v RUL:
29.01.2026
Število ogledov:
36
Število prenosov:
2
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Radiotherapy and oncology
Skrajšan naslov:
Radiother. oncol.
Založnik:
Elsevier
ISSN:
1879-0887
COBISS.SI-ID:
23402757
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
računski izziv
,
segmentacija
,
globoko učenje
,
kritični organi
,
računalniška tomografija
,
magnetna resonanca
,
radioterapija
,
rak glave in vratu
,
dozimetrično vrednotenje
,
dozimetrične omejitve
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J2-60042
Naslov:
Geometrijsko in dozimetrično vrednotenje načrtovanja zdravljenja raka z obsevanjem: korak v smer radioterapije na podlagi slik magnetne resonance
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0232
Naslov:
Analiza biomedicinskih slik in signalov
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P3-0307
Naslov:
Rak glave in vratu - analiza bioloških značilnosti in poskus izboljšanja zdravljenja
Financer:
Novo Nordisk Foundation
Številka projekta:
NFF20OC0062056
Naslov:
Leveraging artificial intelligence for pancreatic cancer diagnosis, treatment planning and treatment outcome prediction
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj