Podrobno

Empirical evaluation of normalizing flows in Markov chain Monte Carlo
ID Nabergoj, David (Avtor), ID Štrumbelj, Erik (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (5,33 MB)
MD5: 23161727AE6B9C5725C215BDC3535E24
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s10994-025-06900-3 Povezava se odpre v novem oknu

Izvleček
Recent advances in MCMC use normalizing flows to precondition target distributions and enable jumps to distant regions. However, there is currently no systematic comparison of different normalizing flow architectures for MCMC. As such, many works choose simple flow architectures that are readily available and do not consider other models. Guidelines for choosing an appropriate architecture would reduce analysis time for practitioners and motivate researchers to take the recommended models as foundations to be improved. We provide the first such guideline by extensively evaluating many normalizing flow architectures on various flow-based MCMC methods and target distributions. When the target density gradient is available, we show that flow-based MCMC outperforms classic MCMC for suitable NF architecture choices with minor hyperparameter tuning. When the gradient is unavailable, flow-based MCMC wins with off-the-shelf architectures. We find contractive residual flows to be the best general-purpose models with relatively low sensitivity to hyperparameter choice. We also provide various insights into normalizing flow behavior within MCMC when varying their hyperparameters, properties of target distributions, and the overall computational budget.

Jezik:Angleški jezik
Ključne besede:normalizing flow, Markov chain Monte Carlo, comparison, sampling, simulation study
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:50 str.
Številčenje:Vol. 114, iss. 12, art. 282
PID:20.500.12556/RUL-176286 Povezava se odpre v novem oknu
UDK:519.245:004.8
ISSN pri članku:0885-6125
DOI:10.1007/s10994-025-06900-3 Povezava se odpre v novem oknu
COBISS.SI-ID:258064387 Povezava se odpre v novem oknu
Datum objave v RUL:26.11.2025
Število ogledov:90
Število prenosov:9
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Machine learning
Skrajšan naslov:Mach. learn.
Založnik:Kluwer Academic Publishers
ISSN:0885-6125
COBISS.SI-ID:2623527 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:normalizacijski tok, Metode Monte Carlo markovske verige, primerjava, vzorčenje, simulacijska študija

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0442-2023
Naslov:Podatkovne vede in digitalna preobrazba

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj