Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Using explainable AI to characterize features in the Mirai mammographic breast cancer risk prediction model
ID
Wang, Yao Kuan
(
Avtor
),
ID
Klaneček, Žan
(
Avtor
),
ID
Wagner, Tobias
(
Avtor
),
ID
Cockmartin, Lesley
(
Avtor
),
ID
Marshall, Nicholas
(
Avtor
),
ID
Studen, Andrej
(
Avtor
),
ID
Jeraj, Robert
(
Avtor
),
ID
Bosmans, Hilde
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,09 MB)
MD5: 3E8CFF3714951B6F394D7211CC574573
URL - Izvorni URL, za dostop obiščite
https://pubs.rsna.org/doi/10.1148/ryai.240417
Galerija slik
Izvleček
Purpose To evaluate whether features extracted by Mirai can be aligned with mammographic observations and contribute meaningfully to the prediction of breast cancer risk. Materials and Methods This retrospective study examined the correlation of 512 Mirai features with mammographic observations in terms of receptive field and anatomic location. A total of 29 374 screening examinations with mammograms (10 415 female patients; mean age at examination, 60 years ± 11 [SD]) from the EMory BrEast imaging Dataset (EMBED) (2013–2020) were used to evaluate feature importance using a feature-centric explainable artificial intelligence pipeline. Risk prediction was evaluated using only calcification features (CalcMirai) or mass features (MassMirai) against Mirai. Performance was assessed in screening and screen-negative (time to cancer, >6 months) populations using the area under the receiver operating characteristic curve (AUC). Results Eighteen calcification features and 18 mass features were selected for CalcMirai and MassMirai, respectively. Both CalcMirai and MassMirai had lower performance than Mirai in lesion detection (screening population: Mirai 1-year AUC, 0.81 [95% CI: 0.78, 0.84]; CalcMirai 1-year AUC, 0.76 [95% CI: 0.73, 0.80]; MassMirai 1-year AUC, 0.74 [95% CI: 0.71, 0.78] [P < .001]). In risk prediction, there was no evidence of a difference in performance between CalcMirai and Mirai (screen-negative population: Mirai 5-year AUC, 0.66 [95% CI: 0.63, 0.69]; CalcMirai 5-year AUC, 0.66 [95% CI: 0.64, 0.69] [P = .71]). However, MassMirai achieved lower performance than Mirai (5-year AUC, 0.57 [95% CI: 0.54, 0.60]; P < .001). Radiologist review of calcification features confirmed Mirai’s use of benign calcification in risk prediction. Conclusion The explainable AI pipeline demonstrated that Mirai implicitly learned to identify mammographic lesion features, particularly calcifications, for lesion detection and risk prediction.
Jezik:
Angleški jezik
Ključne besede:
medical imaging
,
mammography
,
breast cancer
,
risk prediction
,
artificial intelligence
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
10 str.
Številčenje:
Vol. 7, no. 6
PID:
20.500.12556/RUL-176185
UDK:
616-006
ISSN pri članku:
2638-6100
DOI:
10.1148/ryai.240417
COBISS.SI-ID:
248268803
Datum objave v RUL:
24.11.2025
Število ogledov:
102
Število prenosov:
30
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Radiology : Artificial intelligence.
Založnik:
Radiological Society of North America
ISSN:
2638-6100
COBISS.SI-ID:
175499779
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
medicinsko slikanje
,
mamografija
,
rak dojk
,
ogroženost
,
umetna inteligenca
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0389-2022
Naslov:
Medicinska fizika
Financer:
FWO
Program financ.:
Research Foundation - Flanders
Številka projekta:
G0A7121N
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj