Podrobno

FaceMINT : a library for gaining insights into biometric face recognition via mechanistic interpretability
ID Rot, Peter (Avtor), ID Jutreša, Robert (Avtor), ID Peer, Peter (Avtor), ID Štruc, Vitomir (Avtor), ID Scheirer, Walter J. (Avtor), ID Grm, Klemen (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (10,66 MB)
MD5: 974B4412E441DD17FA84E66EF1444CA5
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0262885625003920 Povezava se odpre v novem oknu

Izvleček
Deep-learning models, including those used in biometric recognition, have achieved remarkable performance on benchmark datasets as well as real-world recognition tasks. However, a major drawback of these models is their lack of transparency in decision-making. Mechanistic interpretability has emerged as a promising research field intended to help us gain insights into such models, but its application to biometric data remains limited. In this work, we bridge this gap by introducing the FaceMINT library, a publicly available Python library (build on top of Pytorch) that enables biometric researchers to inspect their models through mechanistic interpretability. It provides a plug-and-play solution that allows researchers to seamlessly switch between the analyzed biometric models, evaluate state-of-the-art sparse autoencoders, select from various image parametrizations, and fine-tune hyperparameters. Using a large scale Glint360K dataset, we demonstrate the usability of FaceMINT by applying its functionality to two state-of-the-art (deep-learning) face recognition models: AdaFace, based on Convolutional Neural Networks (CNN), and SwinFace, based on transformers. The proposed library implements various sparse auto-encoders (SAEs), including vanilla SAE, Gated SAE, JumpReLU SAE, and TopK SAE, which have achieved state-of-the-art results in the mechanistic interpretability of large language models. Our study highlights the promise of mechanistic interpretability in the biometric field, providing new avenues for researchers to explore model transparency and refine biometric recognition systems. The library is publicly available at www.gitlab.com/peterrot/facemint.

Jezik:Angleški jezik
Ključne besede:face recognition, biometrics, mechanistic interpretability, sparse autoencoder, library
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2026
Št. strani:20 str.
Številčenje:Vol. 165, art. 105804
PID:20.500.12556/RUL-175964 Povezava se odpre v novem oknu
UDK:004.93'1
ISSN pri članku:0262-8856
DOI:10.1016/j.imavis.2025.105804 Povezava se odpre v novem oknu
COBISS.SI-ID:257243651 Povezava se odpre v novem oknu
Datum objave v RUL:14.11.2025
Število ogledov:94
Število prenosov:19
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Image and vision computing
Skrajšan naslov:Image vis. comput.
Založnik:Butterworth Scientific
ISSN:0262-8856
COBISS.SI-ID:25590016 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:razpoznavanje obrazov, biometrija, interpretacija mehanizmov, redki samokodirniki, knjižnica

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J2-50069
Naslov:Interpretacija mehanizmov za razložljivo biometrično umetno inteligenco (MIXBAI)

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj