Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
FaceMINT : a library for gaining insights into biometric face recognition via mechanistic interpretability
ID
Rot, Peter
(
Avtor
),
ID
Jutreša, Robert
(
Avtor
),
ID
Peer, Peter
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
),
ID
Scheirer, Walter J.
(
Avtor
),
ID
Grm, Klemen
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(10,66 MB)
MD5: 974B4412E441DD17FA84E66EF1444CA5
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0262885625003920
Galerija slik
Izvleček
Deep-learning models, including those used in biometric recognition, have achieved remarkable performance on benchmark datasets as well as real-world recognition tasks. However, a major drawback of these models is their lack of transparency in decision-making. Mechanistic interpretability has emerged as a promising research field intended to help us gain insights into such models, but its application to biometric data remains limited. In this work, we bridge this gap by introducing the FaceMINT library, a publicly available Python library (build on top of Pytorch) that enables biometric researchers to inspect their models through mechanistic interpretability. It provides a plug-and-play solution that allows researchers to seamlessly switch between the analyzed biometric models, evaluate state-of-the-art sparse autoencoders, select from various image parametrizations, and fine-tune hyperparameters. Using a large scale Glint360K dataset, we demonstrate the usability of FaceMINT by applying its functionality to two state-of-the-art (deep-learning) face recognition models: AdaFace, based on Convolutional Neural Networks (CNN), and SwinFace, based on transformers. The proposed library implements various sparse auto-encoders (SAEs), including vanilla SAE, Gated SAE, JumpReLU SAE, and TopK SAE, which have achieved state-of-the-art results in the mechanistic interpretability of large language models. Our study highlights the promise of mechanistic interpretability in the biometric field, providing new avenues for researchers to explore model transparency and refine biometric recognition systems. The library is publicly available at www.gitlab.com/peterrot/facemint.
Jezik:
Angleški jezik
Ključne besede:
face recognition
,
biometrics
,
mechanistic interpretability
,
sparse autoencoder
,
library
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2026
Št. strani:
20 str.
Številčenje:
Vol. 165, art. 105804
PID:
20.500.12556/RUL-175964
UDK:
004.93'1
ISSN pri članku:
0262-8856
DOI:
10.1016/j.imavis.2025.105804
COBISS.SI-ID:
257243651
Datum objave v RUL:
14.11.2025
Število ogledov:
94
Število prenosov:
19
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Image and vision computing
Skrajšan naslov:
Image vis. comput.
Založnik:
Butterworth Scientific
ISSN:
0262-8856
COBISS.SI-ID:
25590016
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
razpoznavanje obrazov
,
biometrija
,
interpretacija mehanizmov
,
redki samokodirniki
,
knjižnica
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J2-50069
Naslov:
Interpretacija mehanizmov za razložljivo biometrično umetno inteligenco (MIXBAI)
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0250
Naslov:
Metrologija in biometrični sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj