Podrobno

No label left behind : a unified surface defect detection model for all supervision regimes
ID Rolih, Blaž (Avtor), ID Fučka, Matic (Avtor), ID Skočaj, Danijel (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,89 MB)
MD5: 5FE8E40FE5C5D47C1D7FC02B96500874
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s10845-025-02680-8 Povezava se odpre v novem oknu

Izvleček
Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet.

Jezik:Angleški jezik
Ključne besede:surface defect detection, Susurface anomaly detection, industrial inspection, deep learning, mixed supervision
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:21 str.
Številčenje:Vol. , no.
PID:20.500.12556/RUL-175584 Povezava se odpre v novem oknu
UDK:004.93
ISSN pri članku:0956-5515
DOI:10.1007/s10845-025-02680-8 Povezava se odpre v novem oknu
COBISS.SI-ID:251183619 Povezava se odpre v novem oknu
Datum objave v RUL:05.11.2025
Število ogledov:102
Število prenosov:27
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Journal of intelligent manufacturing
Skrajšan naslov:J. intell. manuf.
Založnik:Chapman and Hall.
ISSN:0956-5515
COBISS.SI-ID:15025413 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:detekcija površinskih napak, detekcija površinskih anomalij, industrijsko pregledovanje, globoko učenje, mešan nadzor

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj