Podrobno

Forecasting solar power production by using satellite images
ID Stefanov, Dimitar (Avtor), ID Demšar, Jure (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,05 MB)
MD5: 97B665CF48D02F5DFD6ABDB1C9082274
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0038092X25005869?via%3Dihub Povezava se odpre v novem oknu

Izvleček
Increased integration of photo-voltaic capacities across the world has caused the electrical grid to become more difficult to maintain. In order to operate the grid in an efficient manner, its operators need to rely on accurate forecasts of the solar power generation. For this purpose, our work focused on predicting 2-h ahead solar power generation at 15 min intervals – a typical resolution requirement for solar power plants and system operation measurements. We made solar power generation forecasts for 233 different locations across Slovenia – more extensive research regarding the number of photo-voltaic locations than what can be found in the literature on this topic. We showed that the state-of-the-art deep learning architecture called Temporal Fusion Transformer outperforms well-established benchmarks in solar forecasting by significant margins across all metrics and training settings considered. Our investigation of feature importance also proved that the Temporal Fusion Transformer is capable of extracting a sufficient amount of information from satellite images meaning that such images can be used as a decent replacement for solar power data when the latter is not available.

Jezik:Angleški jezik
Ključne besede:solar forecasting, time series forecasting, deep learning, satellite images
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:13 str.
Številčenje:Vol. 300, Art.113823
PID:20.500.12556/RUL-175512 Povezava se odpre v novem oknu
UDK:004.85:004.93:621.311.243
ISSN pri članku:0038-092X
DOI:10.1016/j.solener.2025.113823 Povezava se odpre v novem oknu
COBISS.SI-ID:245205763 Povezava se odpre v novem oknu
Datum objave v RUL:30.10.2025
Število ogledov:133
Število prenosov:77
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Solar energy
Skrajšan naslov:Sol. energy
Založnik:Association for Applied Solar Energy, Elsevier
ISSN:0038-092X
COBISS.SI-ID:5228039 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:napovedovanje proizvodnje sončne energije, napovedovanje časovnih vrst, globoko učenje, satelitske slike

Projekti

Financer:NSF - National Science Foundation
Program financ.:Directorate for Geosciences
Številka projekta:8200684
Naslov:Diagnostic Analysis of Ecmwf/Fgge Data Fields in the South Pacific During January, 1979

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj