Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Independent component analysis of oddball EEG recordings to detect Parkinson’s disease
ID
Smrdel, Aleš
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,31 MB)
MD5: 7095A2E0D68BC4BA4DD866319D12B8EC
URL - Izvorni URL, za dostop obiščite
https://www.nature.com/articles/s41598-025-07645-8
Galerija slik
Izvleček
Parkinson’s Disease (PD) is one of the most common diseases affecting the human brain, thus approaches are needed to help diagnose it. Since the changes caused by PD are visible in electroencephalograms (EEG), analysis of EEG represents one such approach. In this study, we used 25 EEG recordings of PD patients and 25 of healthy controls, subjected to auditory tasks, available in the Parkinson’s Oddball database. The mean age of the PD patients was 69.7 years (std. 8.7) and 69.3 years (std. 9.6) of the control subjects. We employed the Independent Component Analysis (ICA) method to characterize the PD and control EEG recordings, to represent the changes in habituation as a response to different auditory events via the ICA components in the form of topological distributions, and to classify the EEG recordings of the two groups. Characterization of the frontal and central electrodes of the topological distribution showed high separation power to differentiate EEG recordings of the PD patients and healthy subjects. The average classification results using 5-fold cross-validation over 50 trials and the first four features ranked according to the variance of the ICA components, while the features were logarithm of the variance of the ICA components, yielded the following performances: classification accuracy of 88.56%, sensitivity of 89.36%, and specificity of 87.76%. The use of the ICA method appears to be a promising approach for characterizing and classifying auditory EEG recordings.
Jezik:
Angleški jezik
Ključne besede:
electroencephalogram
,
Parkinson’s disease
,
independent component analysis
,
classification
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
14 str.
Številčenje:
Vol. 15, art. 21889
PID:
20.500.12556/RUL-175427
UDK:
004:616.858
ISSN pri članku:
2045-2322
DOI:
10.1038/s41598-025-07645-8
COBISS.SI-ID:
241052419
Datum objave v RUL:
27.10.2025
Število ogledov:
112
Število prenosov:
26
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Scientific reports
Skrajšan naslov:
Sci. rep.
Založnik:
Nature Publishing Group
ISSN:
2045-2322
COBISS.SI-ID:
18727432
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
elektroencefalogram
,
Parkinsonova bolezen
,
analiza neodvisnih komponent
,
klasifikacija
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj