Podrobno

Independent component analysis of oddball EEG recordings to detect Parkinson’s disease
ID Smrdel, Aleš (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,31 MB)
MD5: 7095A2E0D68BC4BA4DD866319D12B8EC
URLURL - Izvorni URL, za dostop obiščite https://www.nature.com/articles/s41598-025-07645-8 Povezava se odpre v novem oknu

Izvleček
Parkinson’s Disease (PD) is one of the most common diseases affecting the human brain, thus approaches are needed to help diagnose it. Since the changes caused by PD are visible in electroencephalograms (EEG), analysis of EEG represents one such approach. In this study, we used 25 EEG recordings of PD patients and 25 of healthy controls, subjected to auditory tasks, available in the Parkinson’s Oddball database. The mean age of the PD patients was 69.7 years (std. 8.7) and 69.3 years (std. 9.6) of the control subjects. We employed the Independent Component Analysis (ICA) method to characterize the PD and control EEG recordings, to represent the changes in habituation as a response to different auditory events via the ICA components in the form of topological distributions, and to classify the EEG recordings of the two groups. Characterization of the frontal and central electrodes of the topological distribution showed high separation power to differentiate EEG recordings of the PD patients and healthy subjects. The average classification results using 5-fold cross-validation over 50 trials and the first four features ranked according to the variance of the ICA components, while the features were logarithm of the variance of the ICA components, yielded the following performances: classification accuracy of 88.56%, sensitivity of 89.36%, and specificity of 87.76%. The use of the ICA method appears to be a promising approach for characterizing and classifying auditory EEG recordings.

Jezik:Angleški jezik
Ključne besede:electroencephalogram, Parkinson’s disease, independent component analysis, classification
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:14 str.
Številčenje:Vol. 15, art. 21889
PID:20.500.12556/RUL-175427 Povezava se odpre v novem oknu
UDK:004:616.858
ISSN pri članku:2045-2322
DOI:10.1038/s41598-025-07645-8 Povezava se odpre v novem oknu
COBISS.SI-ID:241052419 Povezava se odpre v novem oknu
Datum objave v RUL:27.10.2025
Število ogledov:112
Število prenosov:26
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Scientific reports
Skrajšan naslov:Sci. rep.
Založnik:Nature Publishing Group
ISSN:2045-2322
COBISS.SI-ID:18727432 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:elektroencefalogram, Parkinsonova bolezen, analiza neodvisnih komponent, klasifikacija

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj