Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Machine learning algorithm for rivet-squeezing force estimation based on the dynamic response of the joint
ID
Vrtač, Tim
(
Avtor
),
ID
Pogačar, Miha
(
Avtor
),
ID
Kodrič, Miha
(
Avtor
),
ID
Čepon, Gregor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,42 MB)
MD5: 3F07E80973CBB4AC010143BDF6BA4653
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0888327025011793?via%3Dihub
Galerija slik
Izvleček
The rivet-squeezing force is one of the most influential parameters affecting the performance of a riveted joint. It directly affects the stress distribution near the joint, influencing mechanical properties, fatigue life, and failure mechanisms. Ensuring control over this parameter is therefore essential for product quality. Our prior research has shown that the squeezing force can be estimated post-production by analyzing the dynamic response of the joint - an approach that enables quality control even during later stages of a product’s lifecycle. Adequacy of the riveted joint’s mechanical performance is then estimated through comparison of the riveting force estimate to the desired reference value. Traditional methods rely on the similarity between the dynamic response of the observed joint and those of reference joints with known rivet-squeezing forces. This paper proposes an improved methodology that replaces the similarity-based criterion with a Machine Learning (ML) algorithm to enhance estimation robustness. As in the conventional method, dynamic substructuring is used to isolate the joint’s response from the surrounding assembly, enabling the application of the same ML model across different assemblies - provided that the material, geometric, and frictional properties near the joint remain consistent. The proposed method is validated through a laboratory case study and benchmarked against the existing LAC-based estimation approach. The case study results demonstrate improved robustness and broader generalization against the LAC-based approach. This indicates that the advanced inference capabilities allow the ML model to better distinguish the effects of the rivet-squeezing force from variations caused by material inconsistencies, minor changes in process parameters, or sensor placement compared to the LAC-based approach. The key challenge for the ML-based approach is to acquire a sufficiently large and representative dataset for the ML model training.
Jezik:
Angleški jezik
Ključne besede:
rivet
,
rivet-squeezing force
,
dynamic substructuring
,
machine learning
,
quality control
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
23 str.
Številčenje:
Vol. 241, [article no.] 113478
PID:
20.500.12556/RUL-175088
UDK:
621
ISSN pri članku:
1096-1216
DOI:
10.1016/j.ymssp.2025.113478
COBISS.SI-ID:
253296387
Datum objave v RUL:
15.10.2025
Število ogledov:
159
Število prenosov:
75
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mechanical systems and signal processing
Skrajšan naslov:
Mech. syst. signal process.
Založnik:
Elsevier
ISSN:
1096-1216
COBISS.SI-ID:
15296283
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
kovica
,
sila stiskanja kovice
,
dinamsko podstrukturiranje
,
strojno učenje
,
nadzor kakovosti
Projekti
Financer:
EC - European Commission
Številka projekta:
101138182
Naslov:
Circularity and Remanufacturing-Enabling DIgital Twins
Akronim:
CREDIT
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0263
Naslov:
Mehanika v tehniki
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
L2-60145
Naslov:
Karakterizacija dinamskih lastnosti večosnih spojev za obvladovanje vibroakustičnih lastnosti in spremljanje poškodovanosti gospodinjskih aparatov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj