Podrobno

Machine learning algorithm for rivet-squeezing force estimation based on the dynamic response of the joint
ID Vrtač, Tim (Avtor), ID Pogačar, Miha (Avtor), ID Kodrič, Miha (Avtor), ID Čepon, Gregor (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,42 MB)
MD5: 3F07E80973CBB4AC010143BDF6BA4653
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0888327025011793?via%3Dihub Povezava se odpre v novem oknu

Izvleček
The rivet-squeezing force is one of the most influential parameters affecting the performance of a riveted joint. It directly affects the stress distribution near the joint, influencing mechanical properties, fatigue life, and failure mechanisms. Ensuring control over this parameter is therefore essential for product quality. Our prior research has shown that the squeezing force can be estimated post-production by analyzing the dynamic response of the joint - an approach that enables quality control even during later stages of a product’s lifecycle. Adequacy of the riveted joint’s mechanical performance is then estimated through comparison of the riveting force estimate to the desired reference value. Traditional methods rely on the similarity between the dynamic response of the observed joint and those of reference joints with known rivet-squeezing forces. This paper proposes an improved methodology that replaces the similarity-based criterion with a Machine Learning (ML) algorithm to enhance estimation robustness. As in the conventional method, dynamic substructuring is used to isolate the joint’s response from the surrounding assembly, enabling the application of the same ML model across different assemblies - provided that the material, geometric, and frictional properties near the joint remain consistent. The proposed method is validated through a laboratory case study and benchmarked against the existing LAC-based estimation approach. The case study results demonstrate improved robustness and broader generalization against the LAC-based approach. This indicates that the advanced inference capabilities allow the ML model to better distinguish the effects of the rivet-squeezing force from variations caused by material inconsistencies, minor changes in process parameters, or sensor placement compared to the LAC-based approach. The key challenge for the ML-based approach is to acquire a sufficiently large and representative dataset for the ML model training.

Jezik:Angleški jezik
Ključne besede:rivet, rivet-squeezing force, dynamic substructuring, machine learning, quality control
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:23 str.
Številčenje:Vol. 241, [article no.] 113478
PID:20.500.12556/RUL-175088 Povezava se odpre v novem oknu
UDK:621
ISSN pri članku:1096-1216
DOI:10.1016/j.ymssp.2025.113478 Povezava se odpre v novem oknu
COBISS.SI-ID:253296387 Povezava se odpre v novem oknu
Datum objave v RUL:15.10.2025
Število ogledov:159
Število prenosov:75
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Mechanical systems and signal processing
Skrajšan naslov:Mech. syst. signal process.
Založnik:Elsevier
ISSN:1096-1216
COBISS.SI-ID:15296283 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:kovica, sila stiskanja kovice, dinamsko podstrukturiranje, strojno učenje, nadzor kakovosti

Projekti

Financer:EC - European Commission
Številka projekta:101138182
Naslov:Circularity and Remanufacturing-Enabling DIgital Twins
Akronim:CREDIT

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0263
Naslov:Mehanika v tehniki

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:L2-60145
Naslov:Karakterizacija dinamskih lastnosti večosnih spojev za obvladovanje vibroakustičnih lastnosti in spremljanje poškodovanosti gospodinjskih aparatov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj