Podrobno

In-situ process monitoring and control in EDM: a review
ID Ye, Long (Avtor), ID Guo, Cheng (Avtor), ID Valentinčič, Joško (Avtor), ID Qian, Jun (Avtor), ID Reynaerts, Dominiek (Avtor), ID Yu, Nan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,19 MB)
MD5: 9B15FC0C04CFFFE91A81808F270360A3
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1526612525009120 Povezava se odpre v novem oknu

Izvleček
Electrical discharge machining (EDM) is a well-established technique to process challenging materials such as hardened steel, superalloys, and metal matrix composites, irrespective of their mechanical properties. However, the complex interactions among machining parameters and spatio-temporal process phenomena complicates the quality assurance in EDM, particularly for intricate features or mass production requirements. In-situ process monitoring and control (PMC) emerges as an effective method to mitigate the complexity, achieving stable discharge process and high-quality as-machined parts. This paper presents a comprehensive review of state-of-the-art PMC strategies, addressing their key elements and challenges in the context of EDM. Various sensor-based monitoring including electrical, acoustic emission and process force signals together with high-speed imaging monitoring are examined for their capabilities and limitations in discovering the gap phenomena and their potential for industrial applications. Specifically, emerging machine learning (ML) techniques are highlighted for their application to process temporal signals and identify underlying discharge conditions. This paper also discusses advances in monitoring-based closed-loop feedback control, addressing their effects for prompt adjustment of discharge gap width and long-time process stability. Future research directions such as multi-modal sensor fusion, AI-integrated control and digital twin are proposed towards achieving efficient, reliable, and intelligent PMC with a target at high-level industrial readiness.

Jezik:Angleški jezik
Ključne besede:EDM, process monitoring, process control, machine learning
Vrsta gradiva:Članek v reviji
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Recenzirani rokopis
Leto izida:2025
Št. strani:Str. 899-928
Številčenje:Vol. 152
PID:20.500.12556/RUL-175086 Povezava se odpre v novem oknu
UDK:621.9.048:004.85
ISSN pri članku:1526-6125
DOI:10.1016/j.jmapro.2025.08.031 Povezava se odpre v novem oknu
COBISS.SI-ID:246767363 Povezava se odpre v novem oknu
Datum objave v RUL:15.10.2025
Število ogledov:162
Število prenosov:71
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Journal of manufacturing processes
Skrajšan naslov:J. manuf. process.
Založnik:Elsevier Ltd., Society of Manufacturing Engineers
ISSN:1526-6125
COBISS.SI-ID:1281557 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:elektroerozija, nadzor procesov, krmiljenje procesov, strojno učenje

Projekti

Financer:Royal Society of Edinburgh, UK
Številka projekta:4995

Financer:Brisitsh Academy, UK
Številka projekta:PPHE25\100020

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0248-2022
Naslov:Inovativni izdelovalni sistemi in procesi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj