Podrobno

A matrix product state model for simultaneous classification and generation
ID Mossi, Alex (Avtor), ID Žunkovič, Bojan (Avtor), ID Flouris, Kyriakos (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,77 MB)
MD5: B18B00BC6907D1945804D1A4DDFC72C4
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s42484-025-00272-6 Povezava se odpre v novem oknu

Izvleček
Quantum machine learning (QML) is a rapidly expanding field that merges the principles of quantum computing with the techniques of machine learning. One of the powerful mathematical frameworks in this domain is tensor networks. These networks are used to approximate high-order tensors by contracting tensors with lower ranks. Initially developed for simulating quantum systems, tensor networks have become integral to quantum computing and, by extension, to QML. Drawing inspiration from these quantum methods, specifically the Matrix Product States (MPS), we apply them in a classical machine learning setting. Their ability to efficiently represent and manipulate complex, high-dimensional data makes them effective in a supervised learning framework. Here, we present an MPS model, in which the MPS functions as both a classifier and a generator. The dual functionality of this novel MPS model permits a strategy that enhances the traditional training of supervised MPS models. This framework is inspired by generative adversarial networks and is geared towards generating more realistic samples by reducing outliers. In addition, our contributions offer insights into the mechanics of tensor network methods for generation tasks. Specifically, we discuss alternative embedding functions and a new sampling method from non-normalized MPSs.

Jezik:Angleški jezik
Ključne besede:tensor networks, MPS, GAN, noise robustness, outlier reduction, quantum embeddings
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:18 str.
Številčenje:Vol. 7, art.. ǂ48
PID:20.500.12556/RUL-171597 Povezava se odpre v novem oknu
UDK:004.85
ISSN pri članku:2524-4914
DOI:10.1007/s42484-025-00272-6 Povezava se odpre v novem oknu
COBISS.SI-ID:232768771 Povezava se odpre v novem oknu
Datum objave v RUL:28.08.2025
Število ogledov:189
Število prenosov:55
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Quantum machine intelligence
Skrajšan naslov:Quantum Mach. Intell.
Založnik:Springer Nature
ISSN:2524-4914
COBISS.SI-ID:80757763 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:tenzorske mreže, matrično produktni nastavki, generativni modeli, robustnost na šum, kvantne vložitve, zmanjšanje večjih odstopanj

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:2022-531

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:2022-643

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj