Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
A matrix product state model for simultaneous classification and generation
ID
Mossi, Alex
(
Avtor
),
ID
Žunkovič, Bojan
(
Avtor
),
ID
Flouris, Kyriakos
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,77 MB)
MD5: B18B00BC6907D1945804D1A4DDFC72C4
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s42484-025-00272-6
Galerija slik
Izvleček
Quantum machine learning (QML) is a rapidly expanding field that merges the principles of quantum computing with the techniques of machine learning. One of the powerful mathematical frameworks in this domain is tensor networks. These networks are used to approximate high-order tensors by contracting tensors with lower ranks. Initially developed for simulating quantum systems, tensor networks have become integral to quantum computing and, by extension, to QML. Drawing inspiration from these quantum methods, specifically the Matrix Product States (MPS), we apply them in a classical machine learning setting. Their ability to efficiently represent and manipulate complex, high-dimensional data makes them effective in a supervised learning framework. Here, we present an MPS model, in which the MPS functions as both a classifier and a generator. The dual functionality of this novel MPS model permits a strategy that enhances the traditional training of supervised MPS models. This framework is inspired by generative adversarial networks and is geared towards generating more realistic samples by reducing outliers. In addition, our contributions offer insights into the mechanics of tensor network methods for generation tasks. Specifically, we discuss alternative embedding functions and a new sampling method from non-normalized MPSs.
Jezik:
Angleški jezik
Ključne besede:
tensor networks
,
MPS
,
GAN
,
noise robustness
,
outlier reduction
,
quantum embeddings
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
18 str.
Številčenje:
Vol. 7, art.. ǂ48
PID:
20.500.12556/RUL-171597
UDK:
004.85
ISSN pri članku:
2524-4914
DOI:
10.1007/s42484-025-00272-6
COBISS.SI-ID:
232768771
Datum objave v RUL:
28.08.2025
Število ogledov:
191
Število prenosov:
55
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Quantum machine intelligence
Skrajšan naslov:
Quantum Mach. Intell.
Založnik:
Springer Nature
ISSN:
2524-4914
COBISS.SI-ID:
80757763
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
tenzorske mreže
,
matrično produktni nastavki
,
generativni modeli
,
robustnost na šum
,
kvantne vložitve
,
zmanjšanje večjih odstopanj
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
2022-531
Financer:
Drugi - Drug financer ali več financerjev
Številka projekta:
2022-643
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj