Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Clinical validation of an artificial intelligence-based decision support system for diagnosis and risk stratification of heart failure (STRATIFYHF) : a protocol for a prospective, multicentre longitudinal study
ID
Charman, Sarah Jane
(
Avtor
),
ID
Okwose, Nduka C.
(
Avtor
),
ID
Bosnić, Zoran
(
Avtor
),
ID
Vračar, Petar
(
Avtor
),
ID
Bano, Fatima
(
Sodelavec pri raziskavi
),
ID
Pičulin, Matej
(
Sodelavec pri raziskavi
),
ID
Flis, Borut
(
Sodelavec pri raziskavi
)
URL - Izvorni URL, za dostop obiščite
https://bmjopen.bmj.com/content/15/1/e091793
PDF - Predstavitvena datoteka,
prenos
(515,60 KB)
MD5: EB3034CB0BAB92213A8EF57976EF86C3
Galerija slik
Izvleček
Introduction Heart failure (HF) is a complex clinical syndrome. Accurate risk stratification and early diagnosis of HF are challenging as its signs and symptoms are non-specific. We propose to address this global challenge by developing the STRATIFYHF artificial intelligence-driven decision support system (DSS), which uses novel analytical methods in determining the risk, diagnosis and prognosis of HF. The primary aim of the present study is to collect prospective clinical data to validate the STRATIFYHF DSS (in terms of diagnostic accuracy, sensitivity and specificity) as a tool to predict the risk, diagnosis and progression of HF. The secondary outcomes are the demographic and clinical predictors of risk, diagnosis and progression of HF. Methods and analysis STRATIFYHF is a prospective, multicentre, longitudinal study that will recruit up to 1600 individuals (n=800 suspected/at risk of HF and n=800 diagnosed with HF) aged ≥45 years old, with up to 24 months of follow-up observations. Individuals suspected of HF will be divided into two categories based on current definitions and predefined inclusion criteria. All participants will have their medical history recorded, along with data on physical examination (signs and symptoms), blood tests including serum natriuretic peptides levels, ECG and echocardiogram results, as well as demographic, socioeconomic and lifestyle data, and use of complete novel technologies (cardiac output response to stress test and voice recognition biomarkers). All measurements will be recorded at baseline and at 12-month follow-up, with medical history and hospitalisation also recorded at 24-month follow-up. Cardiovascular MRI assessment will be completed in a subset of participants (n=20–40) from eligible clinical centres only at baseline. Each clinical centre will recruit a subset of participants (n=30) who will complete a 6-month home-based monitoring of clinical characteristics and accelerometry (wrist-worn monitor) to determine the feasibility and acceptability of the STRATIFYHF mobile application. Focus groups and semistructured interviews will be conducted with up to 15 healthcare professionals and up to 20 study participants (10 at risk of HF and 10 diagnosed with HF) to explore the needs of patients and healthcare professionals prior to the development of the STRATIFYHF DSS and to evaluate the acceptability of this mobile application. Ethics and dissemination Ethical approval has been granted by the East Midlands - Leicester Central Research Ethics Committee (24/EM/0101). Dissemination activities will include journal publications and presentations at conferences, as well as development of training materials and delivery of focused training on the STRATIFYHF DSS and mobile application. We will develop and propose policy guidelines for integration of the STRATIFYHF DSS and mobile application into the standard of care in the HF care pathway. Trial registration number NCT06377319.
Jezik:
Angleški jezik
Ključne besede:
heart failure
,
decision support
,
risk stratification
,
clinical validation
,
artificial intelligence
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
9 str.
Številčenje:
Vol. 15, iss. 1
PID:
20.500.12556/RUL-171504
UDK:
004.8:616.12-008.46
ISSN pri članku:
2044-6055
DOI:
10.1136/bmjopen-2024-091793
COBISS.SI-ID:
222988547
Datum objave v RUL:
27.08.2025
Število ogledov:
154
Število prenosov:
40
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
BMJ open
Založnik:
BMJ Publishing
ISSN:
2044-6055
COBISS.SI-ID:
30480601
Licence
Licenca:
CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:
Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
srčna odpoved
,
podpora odločanju
,
napovedovanje rizika
,
klinična validacija
,
umetna inteligenca
Projekti
Financer:
EC - European Commission
Program financ.:
HE
Številka projekta:
101080905
Naslov:
Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
Akronim:
STRATIFYHF
Financer:
UKRI - UK Research and Innovation
Program financ.:
Horizon Europe Guarantee
Številka projekta:
10073472
Naslov:
STRATIFYHF: Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj