Podrobno

Generating realistic synthetic patient cohorts: enforcing statistical distributions, correlations, and logical constraints
ID Fasseeh, Ahmad Nader (Avtor), ID Ashmawy, Rasha (Avtor), ID Hren, Rok (Avtor), ID ElFass, Kareem (Avtor), ID Imre, Attila (Avtor), ID Németh, Bertalan (Avtor), ID Nagy, Dávid (Avtor), ID Nagy, Balázs (Avtor), ID Vokó, Zoltán (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,11 MB)
MD5: E072E3AA53CE04C567D7D046712BF8F6
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1999-4893/18/8/475 Povezava se odpre v novem oknu

Izvleček
Large, high-quality patient datasets are essential for applications like economic modeling and patient simulation. However, real-world data is often inaccessible or incomplete. Synthetic patient data offers an alternative, and current methods often fail to preserve clinical plausibility, real-world correlations, and logical consistency. This study presents a patient cohort generator designed to produce realistic, statistically valid synthetic datasets. The generator uses predefined probability distributions and Cholesky decomposition to reflect real-world correlations. A dependency matrix handles variable relationships in the right order. Hard limits block unrealistic values, and binary variables are set using percentiles to match expected rates. Validation used two datasets, NHANES (2021–2023) and the Framingham Heart Study, evaluating cohort diversity (general, cardiac, low-dimensional), data sparsity (five correlation scenarios), and model performance (MSE, RMSE, R2, SSE, correlation plots). Results demonstrated strong alignment with real-world data in central tendency, dispersion, and correlation structures. Scenario A (empirical correlations) performed best (R2 = 86.8–99.6%, lowest SSE and MAE). Scenario B (physician-estimated correlations) also performed well, especially in a low-dimensions population (R2 = 80.7%). Scenario E (no correlation) performed worst. Overall, the proposed model provides a scalable, customizable solution for generating synthetic patient cohorts, supporting reliable simulations and research when real-world data is limited. While deep learning approaches have been proposed for this task, they require access to large-scale real datasets and offer limited control over statistical dependencies or clinical logic. Our approach addresses this gap.

Jezik:Angleški jezik
Ključne besede:healthcare, health economics, health informatics, synthetic data
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:29 str.
Številčenje:Vol. 18, iss. 8, art. no. 475
PID:20.500.12556/RUL-171095 Povezava se odpre v novem oknu
UDK:614
ISSN pri članku:1999-4893
DOI:10.3390/a18080475 Povezava se odpre v novem oknu
COBISS.SI-ID:244713731 Povezava se odpre v novem oknu
Datum objave v RUL:04.08.2025
Število ogledov:233
Število prenosov:48
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Algorithms
Skrajšan naslov:Algorithms
Založnik:MDPI
ISSN:1999-4893
COBISS.SI-ID:517501977 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:zdravstvo, zdravstvena ekonomija, zdravstvena informatika, sintetični podatki

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj