Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Noise reduction with recursive filtering for more accurate parameter identification of electrochemical sources and interfaces
ID
Simić, Mitar
(
Avtor
),
ID
Medić, Milan
(
Avtor
),
ID
Radovanović, Milan
(
Avtor
),
ID
Risojević, Vladimir
(
Avtor
),
ID
Bulić, Patricio
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,72 MB)
MD5: 750A2FC488A75F30C231396547D0C8C2
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1424-8220/25/12/3669
Galerija slik
Izvleček
Noise reduction is essential in analyzing electrochemical impedance spectroscopy (EIS) data for accurate parameter identification of models of electrochemical sources and interfaces. EIS is widely used to study the behavior of electrochemical systems as it provides information about the processes occurring at electrode surfaces. However, measurement noise can severely compromise the accuracy of parameter identification and the interpretation of EIS data. This paper presents methods for parameter identification of Randles (also known as R-RC or 2R-1C) equivalent electrical circuits and noise reduction in EIS data using recursive filtering. EIS data obtained at the estimated characteristic frequency is processed with three equations in the closed form for the parameter estimation of series resistance, charge transfer resistance, and double-layer capacitance. The proposed recursive filter enhances estimation accuracy in the presence of random noise. Filtering is embedded in the estimation procedure, while the optimal value of the recursive filter weighting factor is self-tuned based on the proposed search method. The distinguished feature is that the proposed method can process EIS data and perform estimation with filtering without any input from the user. Synthetic datasets and experimentally obtained impedance data of lithium-ion batteries were successfully processed using PC-based and microcontroller-based systems.
Jezik:
Angleški jezik
Ključne besede:
electrochemical impedance spectroscopy
,
R-RC circuit
,
recursive filter
,
equivalent circuit model
,
noise reduction
,
lithium-ion batteries
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
17 str.
Številčenje:
Vol. 25, iss. 12, art. 3669
PID:
20.500.12556/RUL-169866
UDK:
621.35:004
ISSN pri članku:
1424-8220
DOI:
10.3390/s25123669
COBISS.SI-ID:
239220995
Datum objave v RUL:
13.06.2025
Število ogledov:
290
Število prenosov:
68
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
elektrokemijska impedančna spektroskopija
,
R-RC vezje
,
rekurzivni filter
,
ekvivalentni model vezja
,
zmanjševanje šuma
,
litij-ionske baterije
Projekti
Financer:
MESTD - Ministry of Education, Science and Technological Development of Republic of Serbia
Številka projekta:
9.032/961-69/24
Naslov:
Signal Processing Using Embedded Systems and Machine Learning
Financer:
MESTD - Ministry of Education, Science and Technological Development of Republic of Serbia
Številka projekta:
19/6-020/966-3-1/23
Naslov:
High-Performance Computing for Signal Processing
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj