Podrobno

Assessing air and noise pollution through acoustic classification of vehicles fuel types using deep learning
ID Hvastja, Andrej (Avtor), ID Ćirić, Dejan (Avtor), ID Milivojčević, Marko (Avtor), ID Prezelj, Jurij (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,13 MB)
MD5: 271096A0CE9968719B0C023B789A8DB0
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2405844025018110 Povezava se odpre v novem oknu

Izvleček
Measuring traffic emissions typically requires expensive analyzers, limiting the scalability of monitoring systems. In this study, we present a novel, cost-effective method for assessing noise and air pollution by classifying vehicles based on their acoustic signatures using artificial intelligence. We collected a dataset of 449 sound recordings of vehicles in an idle state within a real-world urban environment to minimize background noise and vehicle related variables. Psycho-acoustic features-loudness, sharpness, roughness, fluctuation strength, and tonality-and features derived from the Hilbert-Huang Transform (HHT) were extracted from the signals to capture the unique acoustic signatures of different engine types. Using these features, we developed a deep neural network (DNN) capable of distinguishing among petrol, diesel, and high-emission diesel vehicles with an accuracy of 92%. This approach demonstrates that acoustic emissions, i.e., traffic noise, can be linked to exhaust gas emissions. Our findings confirm that acoustic analysis provides an alternative to traditional methods for monitoring urban air quality. By enabling large-scale and dense sensor networks, this methodology offers substantial benefits for real-time environmental monitoring, urban planning, and regulatory enforcement. Additionally, the dual focus on air and noise pollution supports more comprehensive assessments of urban environmental impacts. This study highlights the potential of integrating advanced acoustic analysis with machine learning to create accessible, non-intrusive tools for pollution monitoring and mitigation.

Jezik:Angleški jezik
Ključne besede:acoustic vehicle classification, psychoacoustics, Hilbert-Huang transformation, noise pollution, air pollution, environmental acoustic analysis, engine fuel type
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:15 str.
Številčenje:Vol. 11, no. 10, art. e43426
PID:20.500.12556/RUL-169530 Povezava se odpre v novem oknu
UDK:534
ISSN pri članku:2405-8440
DOI:10.1016/j.heliyon.2025.e43426 Povezava se odpre v novem oknu
COBISS.SI-ID:237944067 Povezava se odpre v novem oknu
Datum objave v RUL:02.06.2025
Število ogledov:332
Število prenosov:44
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Heliyon
Založnik:Elsevier
ISSN:2405-8440
COBISS.SI-ID:21607432 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:akustična klasifikacija vozil, psihoakustika, Hilbert-Huangova transformacija, onesnaženost s hrupom, onesnaženost zraka, okoljska akustična analiza, vrsta goriva za motor

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0401-2022
Naslov:Energetsko strojništvo

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J7-50042-2023
Naslov:Spremljanje urbanega hrupa in biodiverzitete za zeleno prihodnost z akustičnim IoT radarjem s klasifikacijo dogodkov na osnovi UI

Financer:EC - European Commission
Številka projekta:101160293
Naslov:Twinning for Excellence in Adaptive Edge AI
Akronim:AIDA4Edge

Financer:Ministry of Science, Technological Development and Innovation of the Republic of Serbia
Številka projekta:451-03- 65/2024-03/200102
Naslov:-

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj