Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Assessing air and noise pollution through acoustic classification of vehicles fuel types using deep learning
ID
Hvastja, Andrej
(
Avtor
),
ID
Ćirić, Dejan
(
Avtor
),
ID
Milivojčević, Marko
(
Avtor
),
ID
Prezelj, Jurij
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,13 MB)
MD5: 271096A0CE9968719B0C023B789A8DB0
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S2405844025018110
Galerija slik
Izvleček
Measuring traffic emissions typically requires expensive analyzers, limiting the scalability of monitoring systems. In this study, we present a novel, cost-effective method for assessing noise and air pollution by classifying vehicles based on their acoustic signatures using artificial intelligence. We collected a dataset of 449 sound recordings of vehicles in an idle state within a real-world urban environment to minimize background noise and vehicle related variables. Psycho-acoustic features-loudness, sharpness, roughness, fluctuation strength, and tonality-and features derived from the Hilbert-Huang Transform (HHT) were extracted from the signals to capture the unique acoustic signatures of different engine types. Using these features, we developed a deep neural network (DNN) capable of distinguishing among petrol, diesel, and high-emission diesel vehicles with an accuracy of 92%. This approach demonstrates that acoustic emissions, i.e., traffic noise, can be linked to exhaust gas emissions. Our findings confirm that acoustic analysis provides an alternative to traditional methods for monitoring urban air quality. By enabling large-scale and dense sensor networks, this methodology offers substantial benefits for real-time environmental monitoring, urban planning, and regulatory enforcement. Additionally, the dual focus on air and noise pollution supports more comprehensive assessments of urban environmental impacts. This study highlights the potential of integrating advanced acoustic analysis with machine learning to create accessible, non-intrusive tools for pollution monitoring and mitigation.
Jezik:
Angleški jezik
Ključne besede:
acoustic vehicle classification
,
psychoacoustics
,
Hilbert-Huang transformation
,
noise pollution
,
air pollution
,
environmental acoustic analysis
,
engine fuel type
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
15 str.
Številčenje:
Vol. 11, no. 10, art. e43426
PID:
20.500.12556/RUL-169530
UDK:
534
ISSN pri članku:
2405-8440
DOI:
10.1016/j.heliyon.2025.e43426
COBISS.SI-ID:
237944067
Datum objave v RUL:
02.06.2025
Število ogledov:
332
Število prenosov:
44
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Heliyon
Založnik:
Elsevier
ISSN:
2405-8440
COBISS.SI-ID:
21607432
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
akustična klasifikacija vozil
,
psihoakustika
,
Hilbert-Huangova transformacija
,
onesnaženost s hrupom
,
onesnaženost zraka
,
okoljska akustična analiza
,
vrsta goriva za motor
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0401-2022
Naslov:
Energetsko strojništvo
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J7-50042-2023
Naslov:
Spremljanje urbanega hrupa in biodiverzitete za zeleno prihodnost z akustičnim IoT radarjem s klasifikacijo dogodkov na osnovi UI
Financer:
EC - European Commission
Številka projekta:
101160293
Naslov:
Twinning for Excellence in Adaptive Edge AI
Akronim:
AIDA4Edge
Financer:
Ministry of Science, Technological Development and Innovation of the Republic of Serbia
Številka projekta:
451-03- 65/2024-03/200102
Naslov:
-
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj