Podrobno

Finite mixture models : a key tool for reliability analyses
ID Nagode, Marko (Avtor), ID Oman, Simon (Avtor), ID Klemenc, Jernej (Avtor), ID Panić, Branislav (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,54 MB)
MD5: 13253B61CC929020AA29BAC344DBEC5A
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2227-7390/13/10/1605 Povezava se odpre v novem oknu

Izvleček
As system complexity increases, accurately capturing true system reliability becomes increasingly challenging. Rather than relying on exact analytical solutions, it is often more practical to use approximations based on observed time-to-failure data. Finite mixture models provide a flexible framework for approximating arbitrary probability density functions and are well suited for reliability modelling. A critical factor in achieving accurate approximations is the choice of parameter estimation algorithm. The REBMIX&EM algorithm, implemented in the rebmix R package, generally performs well but struggles when components of the finite mixture model overlap. To address this issue, we revisit key steps of the REBMIX algorithm and propose improvements. With these improvements, we derive parameter estimators for finite mixture models based on three parametric families commonly applied in reliability analysis: lognormal, gamma, and Weibull. We conduct a comprehensive simulation study across four system configurations, using lognormal, gamma, and Weibull distributions with varying parameters as system component time-to-failure distributions. Performance is benchmarked against five widely used R packages for finite mixture modelling. The results confirm that our proposal improves both estimation accuracy and computational efficiency, consistently outperforming existing packages. We also demonstrate that finite mixture models can approximate analytical reliability solutions with fewer components than the actual number of system components. Our proposals are also validated using a practical example from Backblaze hard drive data. All improvements are included in the open-source rebmix R package, with complete source code provided to support the broader adoption of the R programming language in reliability analysis.

Jezik:Angleški jezik
Ključne besede:system reliability, mixture model, numerical modelling, density estimation, parameter estimation, EM algorithm, REBIX algorithm
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:24 str.
Številčenje:Vol. 13, issue 10, art. 1605
PID:20.500.12556/RUL-169327 Povezava se odpre v novem oknu
UDK:621:51
ISSN pri članku:2227-7390
DOI:10.3390/math13101605 Povezava se odpre v novem oknu
COBISS.SI-ID:236840707 Povezava se odpre v novem oknu
Datum objave v RUL:23.05.2025
Število ogledov:335
Število prenosov:49
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Mathematics
Skrajšan naslov:Mathematics
Založnik:MDPI AG
ISSN:2227-7390
COBISS.SI-ID:523267865 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:zanesljivost sistema, mešani model, numerično modeliranje, ocena gostote porazdelitve verjetnosti, ocena parametrov, EM algoritem, REBMIX algoritem

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0182
Naslov:Razvojna vrednotenja

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj