Podrobno

Long-term planning of low-voltage networks using reference network models : Slovenian use case
ID Knez, Klemen (Avtor), ID Herman, Leopold (Avtor), ID Ilkovski, Marjan (Avtor), ID Blažič, Boštjan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,76 MB)
MD5: 47D8D4BA816444810B18AC1FDF5F62C2
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0142061525002583 Povezava se odpre v novem oknu

Izvleček
The increasing penetration of distributed energy resources (DERs), electric vehicles (EVs), and heat pumps (HPs) presents significant challenges for low-voltage (LV) distribution networks, requiring advanced planning methodologies to ensure grid reliability and cost-effectiveness. However, existing studies primarily focus on individual network simulations, which are computationally intensive and lack scalability. Moreover, most research relies on synthetic network models rather than real-world distribution system operator (DSO) data, limiting practical applicability. This study addresses these gaps by developing a Reference Network Model (RNM) tailored to the Slovenian LV distribution system. The first objective is to establish reference radial network models based on real DSO data, enabling simulation generalization across the entire distribution network. Using k-medoids clustering, LV networks are categorized into representative groups, facilitating efficient analysis without exhaustive individual network simulations. The second objective is to develop a generalization methodology that extrapolates simulation results from reference networks to the entire LV distribution system. Unlike conventional RNM applications, this approach integrates real-world Slovenian DSO data and incorporates scenario-based reinforcement planning to address the evolving impact of DERs, EVs, and HPs. A key result is cost-benefit analysis, which evaluates investment requirements and operational savings, offering insights for policymakers and DSOs to optimize network planning. Simulation results indicate that most required reinforcements will focus on LV line upgrades, particularly in regions with long feeders and high demand growth. The findings demonstrate that the proposed methodology significantly reduces computational burdens while maintaining high accuracy in predicting network reinforcement needs, making it a scalable and practical tool for long-term distribution system planning.

Jezik:Angleški jezik
Ključne besede:low-voltage distribution networks, network planning, clustering methods, reference network models, power system infrastructure investment
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:17 str.
Številčenje:Vol. 168, art. 110707
PID:20.500.12556/RUL-168899 Povezava se odpre v novem oknu
UDK:621.31
ISSN pri članku:1879-3517
DOI:10.1016/j.ijepes.2025.110707 Povezava se odpre v novem oknu
COBISS.SI-ID:234886659 Povezava se odpre v novem oknu
Datum objave v RUL:06.05.2025
Število ogledov:337
Število prenosov:119
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:International journal of electrical power & energy systems
Skrajšan naslov:Int j. electr. power energy syst.
Založnik:Elsevier
ISSN:1879-3517
COBISS.SI-ID:23398917 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:nizkonapetostna distribucijska omrežja, načrtovanje omrežja, metode gručenja, referenčni modeli omrežja, investicije v elektroenergetske sisteme

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:Young researchers
Številka projekta:17-MR.R958

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:L2-4436
Naslov:Optimizacija obratovanja nizkonapetostnega distribucijskega omrežja z integrirano fleksibilnostjo v realnem času s pomočjo globokega spodbujevanega učenja (DRIFT)

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj